Properties of V-4Cr-4Ti

courtesy of Mike Billone

(additional property data may be found at http://aries.ucsd.edu/PROPS/props.html



PROPERTY VALUE REFERENCE (and COMMENTS)
RT Density 6.05x103 kg/m3 [3]
Melting temp. 1900 +/- 25 C [3]
Electrical resistivity (10-6 ohm-m) 0.328 [1 + 2.028x10-3 (T - 20)] [4,6]
Specific heat (kJ/kg-K) 0.57551 [1 - 36.68/(T + 273)] [1] (V-5Cr-5Ti)
Thermal conductivity (W/m-K) 30.35 [1 + 2.835x10-4 (T - 20)] [1] (V-5Cr-5Ti)
Thermal expansion coefficient 9.08 (1 + 1.21x10-4 T + 2.284x10-7 T2 - 2.40x10-10 T3) x 10-6/K [1] (V-5Cr-5Ti)
Young's modulus (GPa) E = 125.6 [1 - 7.69x10-5 (T - 20)] [7] (RT to 1627 C)
Shear modulus (Gpa) G = 45.9 [1 - 1.82x10-4 (T - 20)] [7] (RT to 677 C)
Ultimate Tensile Strength (MPa) Su = 488 (1.0450 - 2.3735x10-3 T + 6.2675x10-6 T2 - 4.7504x10-9 T3) [8-12] (RT-700 C, see also Fig. 1)
Ultimate Design Tensile Strength (MPa) Sud = 424 (1.0450 - 2.3735x10-3 T + 6.2675x10-6 T2 - 4.7504x10-9 T3) [8-12] (RT-700 C, see also Fig. 1)
Yield Strength (MPa) Sy = 402 (1.0635 - 3.3238x10-3 T + 7.5229x10-6 T2 - 5.3461x10-9 T3) [8-12] (RT-700 C, see also Fig. 2)
Design Yield Strength (MPa) Syd = 322 (1.0635 - 3.3238x10-3 T + 7.5229x10-6 T2 - 5.3461x10-9 T3) [8-12] (RT-700 C, see also Fig. 2)
Uniform elongation (%) eu = 22.3 (0.9733 + 1.4600x10-3 T - 6.2966x10-5 T2 + 5.1635x10-9 T3) [8-12] (T[C], see also Fig. 3)
Total elongation (%) et = 30.8 (0.9972 + 1.8008x10-4 T - 2.0547x10-6 T2 + 1.4227x10-9 T3) [8-12] (T[C], see also Fig. 4)
Reduction in area (%) -delta-A/Ao = 91.3 (1.0118 - 6.6008x10-4 T + 3.5173x10-6 T2 - 5.2599x10-9 T3) [8-12] (T[C], see also Fig. 5)
Thermal creep (%/hour) d(ect)/dt = 1.89 x 10-28 S9.94 (S[MPa], T=600 C) [13] (320-440 MPa)
Secondary thermal creep rate vs. stress at 600 C (for 316L(N), Fe-9Cr-1MoVNb and V-4Cr-4Ti) (see Fig. 11)
Stress vs. Larsen Miller Parameter (P = T (20 + log tr)) log S = -0.92522 + 0.34967 (P/1000) - 0.0087 (P/1000)2 [13-14] (387-420 MPa) (P/1000 > 20, see also Fig. 6) (Fig. 7 shows allowable primary stress vs. rupture time)
Allowable primary membrane stress (Sm) RT-700 C (see Fig. 9)
Thermal stress factor, (3Sm)/{[alpha]m E [k (1-[nu])]-1} (for 316L(N), Fe-9Cr-1MoVNb and V-4Cr-4Ti) (see Fig. 10)
Irradiation creep rate (%/dpa) eci = 3.3x10-4 S D S [MPa], D [dpa] 445 C, 0-120 MPa, 0-3 dpa [17]
Volume swelling rate (%) Delta-V/Vo = 1.9 (D/Dm)3 exp[(3 (1 - D/Dm)] (see Fig. 8) D [dpa], and Dm = 55 dpa 0-85 dpa, 420-600 C [22]

References

  1. ITER Materials Properties Handbook, ed. J. W. Davis, Draft #3, Feb. 1996.

  2. "U.S. Contribution, 1994 Summary Report, Task T12: Compatibility and Irradiation Testing of Vanadium Alloys, " ed. D. L. Smith, ANL/FPP/TM-287, ITER/US/95/IV MAT 10, March 1995.

  3. Metals Handbook, Ninth Edition, Vol. 2: "Properties and Selection: Nonferrous Alloys and Pure Metals," ASM, Metals Park OH (1979).

  4. G. A. Birzhevoy et al., "Physical, Thermophysical and Mechanical properties of V-4Cr-4Ti and V-8Cr-5Ti Alloys before and after Vanadium Ion Irradiation," presented as paper 110020-P at ICFRM-7, Obninsk, Russia, Sept. 25-29, 1995.

  5. W. A. Simpson, "Room Temperature Elastic Properties of V-5Cr-5Ti," Fusion Materials Semiannual Progress Report for Period Ending March 31, 1994, DOE/ER-0313/16 (Sept. 1994) pp. 258-259.

  6. Y. S. Touloukian (ed.), "Thermophysical Properties of High Temperature Solid Materials, The MacMillan Company, New York (1967).

  7. R. J. Farraro and R. B. McLellan, "High Temperature Elastic Properties of Polycrystalline niobium, Tantalum and Vanadium," Metallurgical Transactions A, 10A, Nov. 1979, pp 1699-1702.

  8. B. A. Loomis, L. J. Nowicki and D. L. Smith, "Tensile Properties of Vanadium and Vanadium-Base Alloys," Fusion Materials Semiannual Progress Report for Period Ending March 31, 1991, DOE/ER-0313/10, pp. 145-155.

  9. H. M. Chung, L. Nowicki, D. Busch and D. L. Smith, "Tensile Properties of V-(4-5)Cr-(4-5)Ti Alloys," to be published in Fusion Materials Semiannual Progress Report for Period Ending December 31, 1995, DOE/ER-0313/19.

  10. B. A. Loomis, L. J. Nowicki and D. L. Smith, "Tensile Properties of Unirradiated V-Cr-Ti Alloys and Alternative Approaches for Strengthening the V-4Cr-4Ti Alloy," Fusion Materials Semiannual Progress Report for Period Ending March 31, 1995, DOE/ER-0313/18, pp. 265-272.

  11. J. H. Devan, J. R. DiStephano and J. W. Hendriks, "Chemical and Mechanical Interaction of Interstitials in V-5%Cr-5%Ti," Fusion Materials Semiannual Progress Report for Period Ending March 31, 1994, DOE/ER-0313/16 (Sept. 1994) pp. 140-143.

  12. K. Natesan and W. K. Soppet, "Effects of Oxidation on Tensile Behavior of V-5Cr-5Ti Alloy," Fusion Materials Semiannual Progress Report for Period Ending September 30, 1994, DOE/ER-0313/17 (Sept. 1994) pp. 194-197.

  13. H. M. Chung, B. A. Loomis and D. L. Smith, "Thermal Creep of Vanadium-Base Alloys," in "U.S. Contribution, 1994 Summary Report, Task T12: Compatibility and Irradiation Testing of Vanadium Alloys, " ed. D. L. Smith, ANL/FPP/TM-287, ITER/US/95/IV MAT 10, March 1995, pp 87-94.

  14. R. Bajaj and R. E. Gold, "Mechanical Property Evaluations of Path C Vanadium Scoping Alloys," in Alloy Development for Irradiation Performance Semiannual Progress Report for Period Ending March 31, 1983, DOE/ER-0045/10 (Oct. 1983) pp. 74-80.

  15. H. M. Chung, B. A. Loomis, L. Nowicki and D. L. Smith, "Effects of Dynamically Charged Helium on Tensile Properties of V-4Cr-4Ti," in "U.S. Contribution, 1994 Summary Report, Task T12: Compatibility and Irradiation Testing of Vanadium Alloys, " ed. D. L. Smith, ANL/FPP/TM-287, ITER/US/95/IV MAT 10, March 1995, pp 167-174.

  16. H. M. Chung, B. L. Loomis and D. L. Smith, "Effects of Neutron Irradiation on the Impact Properties and Fracture Behavior of Vanadium-Base Alloys," in "U.S. Contribution, 1994 Summary Report, Task T12: Compatibility and Irradiation Testing of Vanadium Alloys, " ed. D. L. Smith, ANL/FPP/TM-287, ITER/US/95/IV MAT 10, March 1995, pp 147-155.

  17. V. M. Troyanov et al., Irradiation Creep of V-Ti-Cr Alloy in BR-10 Reactor Core Instrumented Experiments," presented as paper 110040-O at ICFRM-7, Obninsk, Russia, Sept. 25-29, 1995.

  18. F. A. Garner and R. J. Puigh, "Irradiation Creep and Swelling of the Fusion Heats of PCA, HT9 and 9Cr-1Mo Irradiated to High Neutron Fluence," J. Nucl. Mater. 179-181 (1991) 577-580.

  19. B. A. Loomis, "Comparison of Swelling for Structural Materials on Neutron and Ion Irradiation, " J. Nucl. Mater. 141-143 (1986) 690-694.

  20. B. A. Loomis, B. J. Kestel, S. B. Gerber and G. Ayrault, "Effect of Helium and Microstructural Evolution in Ion-Irradiated V-15Cr-5Ti alloy," J. Nucl. Mater., 141-143 (1968) 705-712.

  21. D. L. Smith, H. M. Chung, B. A. Loomis, H. Matsui, S. Votinov and W. Van Witzenburg, "Development of Vanadium-Base Alloys for Fusion First-Wall -- Blanket Applications," Fus. Eng. Des. 29 (1995) 399-410.

  22. H. M. Chung, T. M. Galvin and D. L. Smith, "Density Decrease in Vanadium-Base Alloys Irradiated in the Dynamic Helium Charging Experiment," to be published in Fusion Materials Semiannual Progress Report for Period Ending December 31, 1995, DOE/ER-0313/19.