Properties of V-4Cr-4Ti
courtesy of Mike Billone
(additional property data may be found at
http://aries.ucsd.edu/PROPS/props.html
PROPERTY VALUE REFERENCE (and COMMENTS)
RT Density 6.05x103 kg/m3 [3]
Melting temp. 1900 +/- 25 C [3]
Electrical resistivity (10-6 ohm-m)
0.328 [1 + 2.028x10-3 (T - 20)] [4,6]
Specific heat (kJ/kg-K)
0.57551 [1 - 36.68/(T + 273)] [1] (V-5Cr-5Ti)
Thermal conductivity (W/m-K)
30.35 [1 + 2.835x10-4 (T - 20)] [1] (V-5Cr-5Ti)
Thermal expansion coefficient
9.08 (1 + 1.21x10-4 T + 2.284x10-7 T2 - 2.40x10-10 T3) x 10-6/K
[1] (V-5Cr-5Ti)
Young's modulus (GPa)
E = 125.6 [1 - 7.69x10-5 (T - 20)] [7] (RT to 1627 C)
Shear modulus (Gpa)
G = 45.9 [1 - 1.82x10-4 (T - 20)] [7] (RT to 677 C)
Ultimate Tensile Strength (MPa)
Su = 488 (1.0450 - 2.3735x10-3 T + 6.2675x10-6 T2 - 4.7504x10-9 T3)
[8-12] (RT-700 C, see also Fig. 1)
Ultimate Design Tensile Strength (MPa)
Sud = 424 (1.0450 - 2.3735x10-3 T + 6.2675x10-6 T2 - 4.7504x10-9 T3)
[8-12] (RT-700 C, see also Fig. 1)
Yield Strength (MPa)
Sy = 402 (1.0635 - 3.3238x10-3 T + 7.5229x10-6 T2 - 5.3461x10-9 T3)
[8-12] (RT-700 C, see also Fig. 2)
Design Yield Strength (MPa)
Syd = 322 (1.0635 - 3.3238x10-3 T + 7.5229x10-6 T2 - 5.3461x10-9 T3)
[8-12] (RT-700 C, see also Fig. 2)
Uniform elongation (%)
eu = 22.3 (0.9733 + 1.4600x10-3 T - 6.2966x10-5 T2 + 5.1635x10-9 T3)
[8-12] (T[C], see also Fig. 3)
Total elongation (%)
et = 30.8 (0.9972 + 1.8008x10-4 T - 2.0547x10-6 T2 + 1.4227x10-9 T3)
[8-12] (T[C], see also Fig. 4)
Reduction in area (%)
-delta-A/Ao = 91.3 (1.0118 - 6.6008x10-4 T + 3.5173x10-6 T2 - 5.2599x10-9 T3)
[8-12] (T[C], see also Fig. 5)
Thermal creep (%/hour)
d(ect)/dt = 1.89 x 10-28 S9.94 (S[MPa], T=600 C)
[13] (320-440 MPa)
Secondary thermal creep rate vs. stress at 600 C
(for 316L(N), Fe-9Cr-1MoVNb and V-4Cr-4Ti)
(see Fig. 11)
Stress vs. Larsen Miller Parameter (P = T (20 + log tr))
log S = -0.92522 + 0.34967 (P/1000) - 0.0087 (P/1000)2
[13-14] (387-420 MPa)
(P/1000 > 20, see also Fig. 6)
(Fig. 7 shows allowable primary stress vs. rupture time)
Allowable primary membrane stress (Sm) RT-700 C
(see Fig. 9)
Thermal stress factor, (3Sm)/{[alpha]m E [k (1-[nu])]-1}
(for 316L(N), Fe-9Cr-1MoVNb and V-4Cr-4Ti)
(see Fig. 10)
Irradiation creep rate (%/dpa)
eci = 3.3x10-4 S D S [MPa], D [dpa]
445 C, 0-120 MPa, 0-3 dpa [17]
Volume swelling rate (%)
Delta-V/Vo = 1.9 (D/Dm)3 exp[(3 (1 - D/Dm)] (see Fig. 8)
D [dpa], and Dm = 55 dpa
0-85 dpa, 420-600 C [22]
- ITER Materials Properties Handbook, ed. J. W. Davis, Draft #3, Feb. 1996.
- "U.S. Contribution, 1994 Summary Report, Task T12: Compatibility and Irradiation Testing of Vanadium Alloys, " ed. D. L. Smith, ANL/FPP/TM-287, ITER/US/95/IV MAT 10, March 1995.
- Metals Handbook, Ninth Edition, Vol. 2: "Properties and Selection: Nonferrous Alloys and Pure Metals," ASM, Metals Park OH (1979).
- G. A. Birzhevoy et al., "Physical, Thermophysical and Mechanical properties of V-4Cr-4Ti and V-8Cr-5Ti Alloys before and after Vanadium Ion Irradiation," presented as paper 110020-P at ICFRM-7, Obninsk, Russia, Sept. 25-29, 1995.
- W. A. Simpson, "Room Temperature Elastic Properties of V-5Cr-5Ti," Fusion Materials Semiannual Progress Report for Period Ending March 31, 1994, DOE/ER-0313/16 (Sept. 1994) pp. 258-259.
- Y. S. Touloukian (ed.), "Thermophysical Properties of High Temperature Solid Materials, The MacMillan Company, New York (1967).
- R. J. Farraro and R. B. McLellan, "High Temperature Elastic Properties of Polycrystalline niobium, Tantalum and Vanadium," Metallurgical Transactions A, 10A, Nov. 1979, pp 1699-1702.
- B. A. Loomis, L. J. Nowicki and D. L. Smith, "Tensile Properties of Vanadium and Vanadium-Base Alloys," Fusion Materials Semiannual Progress Report for Period Ending March 31, 1991, DOE/ER-0313/10, pp. 145-155.
- H. M. Chung, L. Nowicki, D. Busch and D. L. Smith, "Tensile Properties of V-(4-5)Cr-(4-5)Ti Alloys," to be published in Fusion Materials Semiannual Progress Report for Period Ending December 31, 1995, DOE/ER-0313/19.
- B. A. Loomis, L. J. Nowicki and D. L. Smith, "Tensile Properties of Unirradiated V-Cr-Ti Alloys and Alternative Approaches for Strengthening the V-4Cr-4Ti Alloy," Fusion Materials Semiannual Progress Report for Period Ending March 31, 1995, DOE/ER-0313/18, pp. 265-272.
- J. H. Devan, J. R. DiStephano and J. W. Hendriks, "Chemical and Mechanical Interaction of Interstitials in V-5%Cr-5%Ti," Fusion Materials Semiannual Progress Report for Period Ending March 31, 1994, DOE/ER-0313/16 (Sept. 1994) pp. 140-143.
- K. Natesan and W. K. Soppet, "Effects of Oxidation on Tensile Behavior of V-5Cr-5Ti Alloy," Fusion Materials Semiannual Progress Report for Period Ending September 30, 1994, DOE/ER-0313/17 (Sept. 1994) pp. 194-197.
- H. M. Chung, B. A. Loomis and D. L. Smith, "Thermal Creep of Vanadium-Base Alloys," in "U.S. Contribution, 1994 Summary Report, Task T12: Compatibility and Irradiation Testing of Vanadium Alloys, " ed. D. L. Smith, ANL/FPP/TM-287, ITER/US/95/IV MAT 10, March 1995, pp 87-94.
- R. Bajaj and R. E. Gold, "Mechanical Property Evaluations of Path C Vanadium Scoping Alloys," in Alloy Development for Irradiation Performance Semiannual Progress Report for Period Ending March 31, 1983, DOE/ER-0045/10 (Oct. 1983) pp. 74-80.
- H. M. Chung, B. A. Loomis, L. Nowicki and D. L. Smith, "Effects of Dynamically Charged Helium on Tensile Properties of V-4Cr-4Ti," in "U.S. Contribution, 1994 Summary Report, Task T12: Compatibility and Irradiation Testing of Vanadium Alloys, " ed. D. L. Smith, ANL/FPP/TM-287, ITER/US/95/IV MAT 10, March 1995, pp 167-174.
- H. M. Chung, B. L. Loomis and D. L. Smith, "Effects of Neutron Irradiation on the Impact Properties and Fracture Behavior of Vanadium-Base Alloys," in "U.S. Contribution, 1994 Summary Report, Task T12: Compatibility and Irradiation Testing of Vanadium Alloys, " ed. D. L. Smith, ANL/FPP/TM-287, ITER/US/95/IV MAT 10, March 1995, pp 147-155.
- V. M. Troyanov et al., Irradiation Creep of V-Ti-Cr Alloy in BR-10 Reactor Core Instrumented Experiments," presented as paper 110040-O at ICFRM-7, Obninsk, Russia, Sept. 25-29, 1995.
- F. A. Garner and R. J. Puigh, "Irradiation Creep and Swelling of the Fusion Heats of PCA, HT9 and 9Cr-1Mo Irradiated to High Neutron Fluence," J. Nucl. Mater. 179-181 (1991) 577-580.
- B. A. Loomis, "Comparison of Swelling for Structural Materials on Neutron and Ion Irradiation, " J. Nucl. Mater. 141-143 (1986) 690-694.
- B. A. Loomis, B. J. Kestel, S. B. Gerber and G. Ayrault, "Effect of Helium and Microstructural Evolution in Ion-Irradiated V-15Cr-5Ti alloy," J. Nucl. Mater., 141-143 (1968) 705-712.
- D. L. Smith, H. M. Chung, B. A. Loomis, H. Matsui, S. Votinov and W. Van Witzenburg, "Development of Vanadium-Base Alloys for Fusion First-Wall -- Blanket Applications," Fus. Eng. Des. 29 (1995) 399-410.
- H. M. Chung, T. M. Galvin and D. L. Smith, "Density Decrease in Vanadium-Base Alloys Irradiated in the Dynamic Helium Charging Experiment," to be published in Fusion Materials Semiannual Progress Report for Period Ending December 31, 1995, DOE/ER-0313/19.