DISPERSION STRENGTHENED COPPER ALLOYS

DATA AND CORRELATIONS

Table 1 presents the thermal and structural properties of the dipersion strengthened copper alloys Cu-0.47%Cr-0.19Zr and Glidcop Al-15 copper alloy. It should be noted that these copper alloys are derivative alloys of the general copper alloy Glidcop, refs [1, 2, 3, 4].

Polynomial correlations of the thermal and structural properties of DS copper alloy as functions of temperature, using the data of Table 1, are as follows:

(1)

(2)

(3)

with T in degrees Kelvin and Eqs 1-3 valid in the temperature range 300-1500 K.

The following equations represent the change in the yield stress and the ultimate tensile strength of the Cu-0.47 % Cr-0.19Zr alloy as a function of temperature.

(4)

(5)

with T in degrees Celsius and Eqs 4-5 valid in the temperature range 20-750 C.

The change in the yield stress and the ultimate tensile strength of Glidcop Al-15 copper alloy as a function of temperature, are as follows:

(6)

(7)

Equation (6) is valid in the temperature range 20-650 C and Eq (7) in the range 20-600 C.

Figures 1-4 show the variation of properties with temperature.

           TABLE 1 Thermal and structural properties of the DS copper alloys                                              
 T K   [[rho]  E GPa   [[nu]  k W/m-K  c        [[alpha   T C     [[sigma]]y        [[sigma]]u       
       ]                 ]             J/kg-K   ]]                    MPa               MPa          
       kg/m3                                    m/m-K                                                
                                                                   X     Y       X       Y       
 300           134.04         347.77            16.858     20     463    330     502     380     
 400           126.96         335.31            17.110    100     439    310     458     356     
 500           119.74         322.74            17.419    200     411    285     418     312     
 600           112.37         310.21            17.783    250     383    254     388     279     
 700           104.85         297.56            18.204    300     372    230     377     250     
 800           97.187         284.86            18.681    350     348    195     357     213     
 900           89.373         272.09            19.214    400     321    160     328     175     
1000           81.412         259.26            19.804    450     294    138     306     152     
1100           73.302         246.36            20.449    500     271    115     278     131     
1200           65.044         233.41            21.151    550     211    96      227     110     
1300           56.044         220.39            21.909    600     179    85      186     100     
1400           48.085         207.31            22.723    650     126    82      143             
1500           39.383         194.17            23.594    700      94            97              
                                                          750      46            51              

Note: X is a Cu-0.47 % Cr-0.19Zr alloy which has been 44% cold worked and Y is Glidcop Al-15 copper alloy.

k (W/m-K)

Temperature (K)

Figure 1 : Thermal conductivity of DS copper.



      E (GPa)      [[alpha]] (10-6 m/m-K)

Temperature (K)

Figure 2 : Elastic modulus and thermal expansion of DS Copper.



      [[sigma]]y  (MPa)      [[sigma]]u (MPa)

Temperature (C)

Figure 3: Yield stress and ultimate tensile strength of Cu-0.47 % Cr-0.19 Zr alloy (44 % cold worked)



      [[sigma]]y (MPa)      [[sigma]]u (MPa)

Temperature (C)

Figure 4 : Yield stress and ultimate tensile strength of Glidcop Al-15 copper alloy.




References

  1. ITER Documentation Series, No 29, IAEA, Vienna 1991. "Blanket, Shield Design and Material Data Base.

  2. Detail of the ITER Outline Design Report. The ITER Machine, Vol 2, San Diego, 10- 12 January 1994.

  3. T J. Miller, S J. Zinkle and B A. Chin. Strength and Fatigue of Dispersion-Strengthened Copper. Journal of Nuclear Materials, 179 - 181, pg 263 - 266, North-Holland.

  4. Ivica Smid, Masato Akiba, Masanori Araki, Satoshi Suzuki and Kazuyoshi Satoh. Material and Design considerations for the Carbon Armored ITER Divertor. July 1993, pg 32.