PURE COPPER

Pure copper and some selected copper alloys are widely used in experimental plasma confinement devices and have also been proposed for various fusion power plant applications where a high thermal or electrical conductivity material is required.

Copper based alloys have been considered as possible candidate materials for first wall, limiter and divertor components and as field coils and stabilisers for coils in magnetic confinement fusion devices. Their use as a first wall material has been proposed in designs where high thermal loads are expected on the first wall or where a shell of high electrical-conductivity material is required. Copper alloys have also been considered for the electrically-conducting central column of the tight aspect ratio tokamaks.

The main advantage of copper alloys lies in their high thermal conductivities, which allows for higher heat fluxes.

GENERAL PROPERTIES - PURE COPPER [1]

Physical properties

Boiling Point : 2567 C
Density @ 20 C : 8.96 g/cm3
Melting Point : 1083 C

Electrical properties

Electrical Resistivity @ 20 C : 1.69 u [[Omega]] cm
Cold junction @ 0 C,
Hot junction @ 100 C : + 76 mV
Temperature Coefficient @ 0 - 100 C : 0.0043/K

Mechanical properties

Material Condition   Soft                 Hard                 Polycrystalline      
Bulk Modulus (GPa)                                             137.8                
 Hardness-Vickers    49                   87                                        
  Izod Toughness     58                   68                                        
       (J/m)                                                                        
  Poisson's Ratio                                              0.343                
 Tensile Strength    224                  314                                       
       (MPa)                                                                        
 [[sigma]]y (MPa)    54                   270                                       
      E (GPa)                                                  129.8                

Thermal properties

Latent Heat of Evaporation : 4796 J/g
Latent Heat of Fusion : 205 J/g
Linear Expansion Coefficient
@ 0 - 100 C : 17.0x10-6 m/m-K
Specific Heat @ 25 C : 385 J/kg-K
Thermal Conductivity, @ 0 - 100 C : 401 W/m-K

DATA AND CORRELATIONS

The thermal and structural properties as a function of temperature are presented in Table 1, refs [2, 3, 4, 5]. Polynomial correlations of the thermal and structural properties as functions of temperature, using the data of Table 1, are as follows:

(1)

(2)

(3)

(4)

(5)

with T in degrees Kelvin and Eqs (1), (2) and (4) are valid in the temperature range 293-1300 K, Eq (3) in the range 293-873 K and Eq (5) in the range 293-1000 K.

Figures 1-3 show the variation of properties with temperature.

              TABLE 1 Thermal and structural properties of pure copper                                         
  T K    [[rho]  E GPa      [[nu]]  k W/m-K    c J/kg-K   [[sigma]]  [[alpha]]  [[sigma]]  
         ]                                                y  MPa     (10-6)     u MPa      
         kg/m3                                                       m/m-K                 
  293    8933    129.80     0.34    400.68     383.48     210.74     15.40      250.42     
  300                               401.00     385.00     210.00     15.40      250.00     
  350                               396.78     392.00     20.652     15.77      238.07     
  373                               395.20     394.73     205.00     15.94      230.00     
  400                               393.00     398.44     205.00     16.15      223.03     
  450                               389.93     403.00     197.81     16.53      204.85     
  473                               388.35     405.90     195.00     16.60      200.00     
  500                               386.50     408.00     181.50     16.92      184.29     
  550                               383.08     412.00     156.74     17.31      162.12     
  573                               381.50     414.80     140.00     17.49      150.00     
  600                               379.00     417.00     126.48     17.70      139.11     
  650                               376.23     421.00     94.83      18.10      116.00     
  673                               374.65     422.42     85.00      18.30      100.00     
  700                               372.80     425.00     65.93      18.50      93.59      
  773                               367.80     429.76     35.00      19.10      70.00      
  800                               366.00     432.00     26.32      19.32      53.85      
  873                               360.96     437.82     10.00      20.00      30.00      
  900                               359.11     441.00                20.15      26.00      
 1000                               352.00     451.00                21.00      16.15      
 1073                               347.26     460.07                21.60                 
 1100                               345.41     464.00                21.88               
 1200                               339.00     480.00                22.76               
 1250                               335.13     490.00                23.21                
 1300                               331.71     506.00                23.67                

      k (W/m-K)      c (J/kg-K)

Temperature (K)

Figure 1 : Thermal conductivity and specific heat of pure copper.



      [[sigma]]y (MPa)	      [[sigma]]u (MPa)

Temperature (K)

Figure 2 : Yield stress and ultimate tensile strength of pure copper.



[[alpha]] (10-6 m/m-K)

Temperature (K)

Figure 3 : The thermal expansion coefficient of pure copper.




References

  1. Goodfellow. Metals, Alloys, Compounds, Ceramics, Polymers, Composites. Catalogue 1993/94.

  2. J. Phys. Chem. Ref. Data, Vol. 13, No. 4, (1984) pg 1252

  3. Frank P. Incropera, David P Dewitt. Fundamentals of Heat and Mass Transfer. Second Edition

  4. T J. Miller, S J. Zinkle and B A. Chin. Strength and Fatigue of Dispersion-Strengthened Copper. Journal of Nuclear Materials, 179 - 181, pg 263 - 266, North-Holland.

  5. Handbook of Chemistry and Physics, First Edition, CRC Press, pg 12 - 108.