

Overview of KrF Laser Development*

18th High Average Power Laser Program Workshop

presented by J. Giuliani from contributed slides

Santa Fe, NM April 8-9, 2008

*Supported by the Department of Energy/NNSA/DP

NRL, Plasma Physics Division:

J. SethianM. MyersS. ObenschainJ. GiulianiJ. DubingerM. Wolford

Commonwealth Tech:

F. HegelerM. FriedmanT. AlbertJ. ParishR. JonesP. Howard

RSI:

P. Burns R. Lehmberg S. Searles W. Webster

SAIC:

R. Jaynes A. Mangassarian

Delphic Oracle: A. Robson

PLEX:

M. McGeoch

APP:

S. Glidden

H. Sanders

Georgia Tech:

- S. Abdel-Khalik
- D. Sadowski
- K. Schoonover

1

Voss Sci. D. Rose

Key Components of a Krypton Fluoride (KrF) Laser

- A. Main Amp
 - pulse power
 - oscillator single shot
 - recirculator
 - oscillator rep-rate
 - focal profile
- B. Cathode Development
 - strip
 - ceramic honeycomb

- C. Pre-Amp
- D. Laser System
 - multiplexing
 - rep-rate shots
- E. Future
 - pre-amp recirculator
 - scalloped hibachi
 - Zirconia cathode
 - foil material

Main Amplifier

Long duration demonstrated for pulsedpower e-beam diode

Five times10,000 continuous shots @ 1 Hz, into cooled anode plate, without breaking diode vacuum.

Cathode emission uniformity maintained throughout the whole run.

(=> laser pumping uniformity)

E-Beam Deposition Power

= (Pressure Rise (E)*Radiation Correction (105%)) + Laser Energy (E) $_{6}$ Distributed over the pulse width measured in the diode

Time (ns)

30 shots 1 Hz Focal Profile Measurement ("Pseudo ISI")

Hibachi/Cathode Development

Strip cathode patterns e-beam to miss ribs, thereby enhancing deposition efficiency.

Radiachromic film image (time-integrated)

honeycomb

Hegeler, et al., POP, vol.11, p.5010 (2004)

strip cathode 900 kW/cc gas deposition

Foil is lifetime sometimes limited by debris from Cordierite cathode

Silica coated reduces debris attack of hibachi foil.

25 J Output of Two Beam Angularly Multiplex Preamplifier

Angularly multiplex 30 J preamplifier yield with strip cathodes

Preamplifier Strip Cathodes Zircar to Suppress Electron Emission Deposition 30% Larger than Monolithic

Gas Composition	Pressure	Laser Yield
82.2% Ar, 17.5% Kr, 0.3% F ₂	18 psi 6	29.5 J
81.2% Ar, 18.5% Kr, 0.3% F ₂	17 psi 6	30.3 J
80% Ar, 19.7% Kr, 0.3% F ₂	16 psi	28.4 J
59.7% Ar, 40% Kr, 0.3% F ₂	15 psi	29.8 J

Least stress on foils

Full Laser System

Beamlet #'s correspond to temporal sequencing

Note: This simplified sketch neglects two mirror arrays, including the main amp input array. Labeled positions refer to following slides.

50

-5

100

Time (ns)

150

Photodiode signals of the multiplexed laser beam through the Electra system

0.2

0

-0.2

100

200

Time (ns)

300

400

200

Photodiode Signal Sum is 460 J, Calorimeter on same shot measured 462 J

Full laser system yield 1.585 kJ in one second 5 Hz burst

Pre-amp requires a recirculator for efficient rep-rate system operation

Pre-amp without gas recirculator

Main-amp with gas recirculator

Efficiency

and fall of

e-beam.

Orestes predicts laser system output from ~350 J to ~800 J depending on cathode

Plasma Physic Division

1) Zirconia has similar electrical properties to ceramic cordierite, but 5X mechanical strength. (July '08)

to

Future

2) Scalloped hibachi significantly lowers mechanical stress on foil, even at elevated temperatures.

3) Pre-amp recirculator for full system rep-rate runs.

4) Monel or Inconel foils: more resistance to F_2 , less grain structure which initiate mechanical failure modes.

