Mercury Technical Project Review

Camille Bibeau Project Leader Laser Science and Technology

High Average Power Laser Technical Workshop Pleasanton, California November 13 & 14, 2001

The goals this year are to build and characterize Mercury laser system with one amplifier and two pump modules

This will be accomplished through 6 objectives:

- Build two pump delivery systems
- Fabricate Yb:S-FAP crystals
- Design and build wedged amplifier head
- Build injection and reverser hardware
- Perform integrated tests and code benchmarking
- Explore advanced Yb:S-FAP growth

We are planning to deliver 320 kW of diode peak power to the gas cooled amplifier head and conduct extraction experiments by the end of the year

The full system activation will occur in stages

We are conducting experiments in the Mercury laser

Objective 1: Build two pump delivery systems

Diode tiles on backplanes	
beam	

The V-BASiS package requires precision layered metallic coatings

Tiles are operated (burned-in) at ~20% above nominal operating powers for 10⁶ shots before assembling in the Mercury system

Four 80 kW diode backplanes have been built

The Control System has been upgraded to include real-time error flagging

Controls – Hardware Diagram

Objective 2: Fabricate Yb:S-FAP crystals

• Four 4x6 cm slabs were diffusion bonded and are being finished (3 LLNL, 1 Northrup)

We incorporate QA at several points during the fabrication process

Objective 3: Design and build wedged amplifier head

Status

- Solid vanes will start arriving on 11/9
 vibration tests will validate design
- Vanes with holes for slabs will arrive in December

Objective 4: Build reverser and injection hardware

Status

- Injection and reverser hardware installed
- Vacuum transport telescopes collimated
 4 pinhole plate installed

Front end fully assembled

- YLF oscillator, two preamps, pc installed
- serrated aperture installed
- collimation established
- Half aperture Pockels cell tested and driver built
 - 1.5 x 2.5 cm² (< 0.5% depolarization)
 - Full aperture design specified

We have four-passed the beam through the system using the reverser

A half aperture (1.5 x 2.5 cm²) Pockels cell with high average power capability was tested and shown to have depolarization of < 0.5% at 1.047 nm

Objective 5: Integrated tests and benchmarking

Mercury layout with MIRO propagation code

Status

- Beam was successfully 4-passed through system
- Several measurements with glass performed
 - imaging
 - pointing stability
 - gain
- Four diagnostics packages built

 3 activated
- MIRO propagation code written to model full and half Mercury

MIRO is used to predict energy, wavefront B-integral, etc

Four-pass gain measurements were performed with Nd:glass slabs as surrogate amplifier material

Four diagnostic stations have been built

We are using a dark field image to track the onset of damage

"Dark field" image

Ray trace code is used to design pump delivery system

Pump light distribution at output agrees with model

Objective 6: Advanced S-FAP growth

HEM: Crystal Systems

Goal

Czochralski: LLNL/Northrup

Status

- Feasibility study with HEM
 - 11 crystal growth experiments
 - 2 cm cube crystals grown, but have brownish color from color centers
 - annealing appears to remove color centers -
- LLNL growth yielded a 5 cm diameter boule ٠

A compact spectral sculptor using a liquid-crystal modulator light valve has been demonstrated

Spectral sculpting has been demonstrated

Our goal is to fully activate the system by the end of the 2001 calendar year

U

- Build remaining two pump delivery systems (3 & 4)
- Install 7 Yb:S-FAP crystals in amplifier and grow 7 more for 2nd amplifier
- Build and install second amplifier head and utilities
- Build full aperture Pockel cell and install in reverser
- Perform experiments with one amplifier fully populated with Yb:S-FAP crystals

- Continue advanced Yb:S-FAP growth
- Install spectral sculptor in front end and develop code for average-power frequency conversion