Final Radial/Vertical Builds And Nuclear Heat Load To ARIES-AT Components

L. El-Guebaly

Fusion Technology Institute University of Wisconsin - Madison

Major Changes

	TT	T) 1	1 1	.1 • 1
•	IK	RI	ankat	thicknoon
•	$\mathbf{1D}$	DI	anket	thickness

- OB Blanket-II thickness
- HT shield thickness
- 1 cm thick W Kink shell added on OB B-II
- 0.35 cm thick W coating for divertor plates
- Latest TF magnet composition
- 5-14 cm inner coil case*; 14 cm outer coil case*
- 6/14/00 Strawman parameters
- Key nuclear parameters:


Overall TBR 1.1 Overall Mn 1.1

FW lifetime 3.8 FPY[#]

^{*} Will change as magnet design progresses

^{*} Shorter lifetime due to higher n wall loading

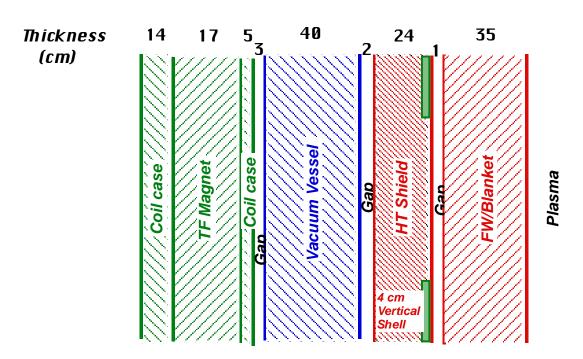
Nuclear Heat Load to All Components

 $(P_f = 1755 \text{ MW}, P_n = 1404 \text{ MW})$

Nuclear Heating (MW):	<u>Inboard</u>	<u>Outboard</u>	<u>Divertor**</u>	Total
FW or DP	39	96	43#	178 (12%)
Blanket:				1207 (78%)
B-I	302	727		
B-II (45 cm)		141		
1 cm W Kink Shell		8		
4 cm W V.S. Shells		24		
16 Wedges*		5		
HT Shield/IB W Shells	37 / 3	9	112##	161 (10%)
Total	381 (25%)	1010 (65%)	155 (10%)	1546
Low Grade Heat: Vacuum Vessel (MW)	9	4	2 (15*** 1% of total htg)
Magnet (kW):				
Inner Coil Case	0.3	73	~1	74###
Winding Pack	0.4	2.4	~0.5	3
Outer coil case	0.06	0.1	~0.04	0.2

^{**} upper and lower divertor regions

[#] 27 MW in dome, 9 MW in outer divertor plates, 7 MW in inner divertor plates


^{* 3%} of B-II heeting

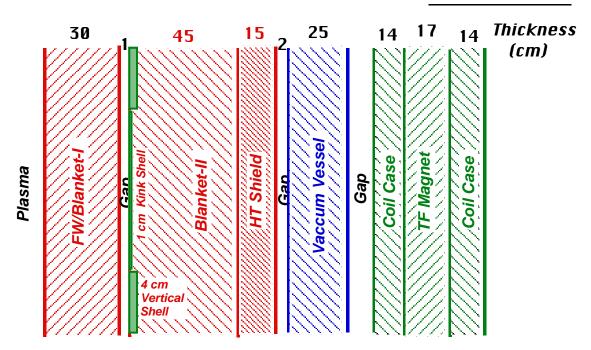
^{*** 58} MW in replaceable shield, 26 MW in vertical shield, 29 MW in IB shield above/below X point does not include thermal heat leak from HT shield (5-10 MW)

^{###} requires 0.8 MW of cryogenic load @ 10 W/W

Inboard Radial Build*

<u>Component</u>	Composition [#]
FW (1.4 cm)	73% SiC , 27% LiPb
Blanket (33.6 cm)	17% SiC, 83% LiPb
HT Shield	15% SiC, 10% LiPb, 70.3% B-FS, 4.7% W
Vacuum Vessel	13% FS, 22% H ₂ O, 65% WC
Coil Case	95% 304SS, 5% LN
Winding Pack	72% Inconel, 7% Y ₁ Ba ₂ Cu ₃ O ₅ , 7% CeO ₂ ,
-	0.5% Ag, 13.5% GFF Polyimide

• VV/case gap contains 15% superinsulation


_

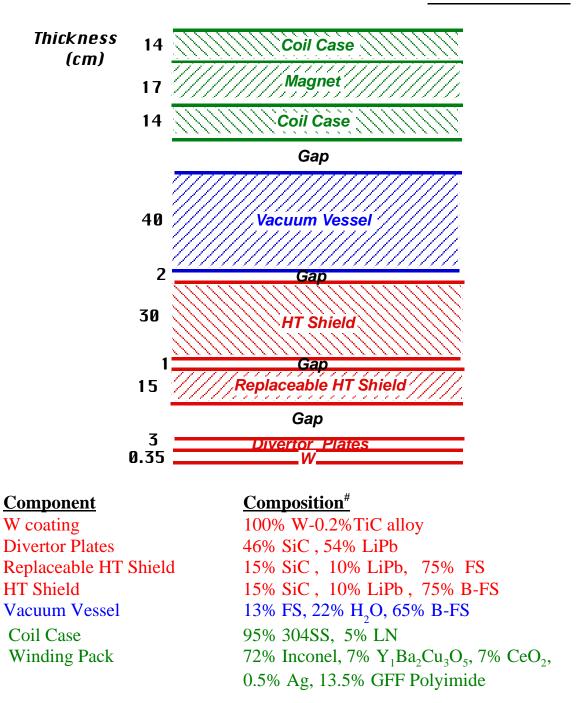
^{*} Safety factor of 3 considered in all shielding calculations

^{*} SiC and WC are 95% dense

Outboard Radial Build*

Composition[#] **Component** FW/Blanket-I: 73% SiC, 27% LiPb **FW** (1.4 cm) 17% SiC, 83% LiPb B-I (28.6 cm) Blanket-II 19.3% SiC, 77.3% LiPb, 3.4% W 15% SiC, 10% LiPb, 75% B-FS HT Shield Vacuum Vessel** 30% FS, 70% H₂O 95% 304SS, 5% LN Coil Case 72% Inconel, 7% $Y_1Ba_2Cu_3O_5$, 7% CeO_2 , Winding Pack 0.5% Ag, 13.5% GFF Polyimide

- Along with blanket/shield/V.V., 5 cm thick port enclosures and 5 cm side coil case provide shielding for sides of winding pack
- Wedge underneath magnet is composed of B-II, HT shield, and V.V.


** Composition is slightly of-optimum to simplify V.V. design

^{*} Safety factor of 3 considered in all shielding calculations

^{*} SiC and WC are 95% dense

Vertical Build*

• Need info on size of pumping ducts to design penetration shield

^{*} Safety factor of 3 considered in all shielding calculations

^{*} SiC and WC are 95% dense