Max-Planck-Institut für Plasmaphysik

Self-passivating tungsten alloys for first wall applications

Christian Linsmeier

Freimut Koch, Christian Lenser, Stefan Lindig, Marcin Rasinski, Martin Balden, Annegret Brendel

Max-Planck-Institut für Plasmaphysik Garching b. München, Germany

Outline

- Applications: ITER and DEMO
- Self-passivation mechanism
- Quaternary alloys
- W-Si-Cr bulk materials

Accidential loss of coolant in reactor

Power plant conceptual study

Temperature profile in PPCS Model A, 10 days after accident with a total loss of all coolant.

[Final Report of the European Fusion Power Plant Conceptual Study, 2004]

- Accidental loss of coolant: peak temperatures of first wall up to 1200 °C due to nuclear afterheat
- Additional air ingress: formation of highly volatile WO₃ (Re, Os)
- Evaporation rate: order of 10 -100 kg/h at >1000°C in a reactor (1000 m² surface)
 - \rightarrow large fraction of radioactive WO₃ may leave hot vessel

Development of selfpassivating tungsten alloys

He-cooled divertor modular design for DEMO (KIT)

He-cooled multi-jet (HEMJ) concept

P. Norajitra, KIT

Goal: \geq 10 MW/m²,

100-1000 load cycles

He-cooled divertor modular design for DEMO (KIT)

He-cooled multi-jet (HEMJ) concept

Post-examination after HHF tests at FZJ (90 load cycles at 9 MW/m²):

- Formation of thick oxide scale
- Crack propagation

Application for selfpassivating tungsten alloys

P. Norajitra, KIT

Efremov (test range 5-13 MW/m²)

Self passivating tungsten-based alloys:

Surface composition automatically adjusts to the requested property

Normal operation (600°C):

Formation of tungsten surface by depletion of alloying element(s) due to preferential sputtering

Accidental conditions:

(air ingress, up to 1200 °C) Formation of protective barrier layer

Self passivating tungsten-based alloys:

Surface composition automatically adjusts to the requested property

Normal operation (600°C):

TRIDYN numerical simulation of sputter erosion of W-Si-Cr alloy (D ions, 30 eV, fluence 10¹⁸/cm²)

Accidental conditions:

(air ingress, up to 1200 °C) Formation of protective barrier layer

Self passivating tungsten-based alloys:

Surface composition automatically adjusts to the requested property

Normal operation (600°C):

TRIDYN numerical simulation of sputter erosion of W-Si-Cr alloy (D ions, 30 eV, fluence 10¹⁸/cm²)

Accidental conditions:

Cross section of sputter deposited W-Si-Cr film after oxidation at 1000°C for 1h

Quaternary tungsten based alloys

Addition of reactive elements to W-Si-Cr to improve oxide film formation and adherence

Co-deposition by Magnetron sputtering

- Film thickness ~ $4\mu m$
- SiO₂ and Al₂O₃ substrates used for oxidation

Investigated systems

- W-Si-Cr-Zr
- W-Si-Cr-Y

(different concentrations)

Schematic view of deposition facility

Peak shift due to Lattice Distortion

d	20	h	k	1
Angström	o			
2,2976	39.177	1	1	0
2,1922	41.1438	1	1	0
1,5567	59.3162	2	0	0
1,3043	72.3989	2	1	1
1,2668	74.8987	2	1	1
0,9823	103.2851	3	1	0
0,8283	136.8753	3	2	1

- Fifth order polynomial by Gust et al. used to calculate W concentration in assumed binary W-Cr lattice
- *c*(Cr) = 27.5 at-% from peak shift; *c*(Cr) = 29.2 at-% from RBS

Gust, W.; Predel, B.; Roll, U.: Journal of the Less-Common Metals, 69, pp. 331-353, 1980

WSi3Cr10Zr5 powder

(annealed at 1000 °C under Ar)

- c(Cr) = 24 at-% after deposition (RBS); c(Cr) = 6.75 at-% after annealing
- Thermodynamic equilibrium: *c*(Cr) = 7 at-% (Gust et al.)
- Cr precipitates from the binary lattice

Oxidation experiments

Oxidation of W-Si4-Cr8-Y3 at 1000°C for 1 hours

- Heating under inert gas flow
- Start of oxygen at stable temperature

- Parabolic oxidation rates: $(\Delta m)^2 = k t$: \rightarrow Diffusion-governed process
- Two oxidation rates discernible

XRD analysis: oxidized alloys

 \rightarrow no volatile WO₃ formed!

WSi3Cr10Zr5 (oxidized 1h at 1000 °C)

Microstructure of oxidized alloys

WSi3Cr10Zr5:

SEM of cross section (FIB), 1000°C, 1h

- Dense Cr₂O₃ barrier scale
- Cr is main diffusing species
- Mixed oxide zone(s)
- Cr depletion zone with voids
- No formation of WO₃

Comparison of oxidation results

<u>Arrhenius plot of oxidation rates of tungsten</u> and tungsten alloys

Summary: Quaternary alloys

- Quaternary alloys show better passivation behavior than ternary while containing more W
- Active elements (Y/Zr) do not form oxide layers, but improve oxide scale adhesion
- Surface oxide consists of Cr₂O₃
- Oxide phases formed are Cr₂O₃, WCrO₄, WO₂ (2 modifications), ZrSiO₄ (600°C), but no WO₃ → passivation successful
- Two step-oxidation: switch in oxidation mechanism during oxidation
- Different oxidation mechanisms at different temperatures
- Restructuring induced by the precipitation of Cr from the W lattice

Samples:

8W-Cr-Si2 and 8W-Cr-Si4 nominal composition: W Si10 Cr10

Investigated properties:

- morphology
- element distribution
- thermal diffusivity
- hardness / Young's modulus
- oxidation behavior

Collaboration with CEIT / San Sebastián

Morphology: SEM

- W phases dominate: gray areas
- pure W (bright) to W alloys
- small oxidic precipitates (no W!)

3D analysis: Focused ion beam

width of cut: ~75 μ m

• 3D morphology identical to surface

2D element distribution

Cross-section 8W-Cr-Si2

3D element distribution

Thermal diffusivity

- constant thermal diffusivity
- 50% value of VPS-W

Nanoindenter: micro-hardness, Young's modulus

	Micro-hardness [GPa]	Young's modulus [GPa]
alloys: 8W-Cr-Si2	15.6	320
8W-Cr-Si4	15.5	321
comparison: W _f /W (fiber) W _f /W (CVD-W)	9.1—9.8 7.5—8.1	480—535 455—530
(dense bulk W		410)

Oxidation rates for bulk W Si10 Cr10

IPP

strong passivation at 800°C, comparable to quaternary alloy layers

Cross section

IPP

Cross section, EDX mapping: Cu

Cross section, EDX mapping: Cr

Cross section, EDX mapping: W

IPP

Cross section, EDX mapping: O

Cross section, EDX mapping: Si (+ W)

Results of EDX and XRD analysis

Bulk alloys: summary

- W-Cr alloys
- W-Si: hints from XRD
- pure W phase still present in precipitates
- Si-O precipitates
- no visible pores
- oxidation rates promising at 800°C, CrO_x and Cr₂WO₆ at 1000 °C

Outlook: W alloys

Further investigations, ideas:

- optimization (Si-free alloys, increase W fraction in quaternary alloys ...)
- production and characterization of bulk alloys (IPP in cooperation with CEIT)
- preferential sputtering with H / D / He ...
- true surface composition at different annealing states
- retention and release of hydrogen isotopes
- comparison of surface layers with bulk alloys (same composition)
- surface chemical reactions as a plasma-facing material ("material mixing")
- → Promising self-passivating material for a reactor application