

Japan-US Workshop on Fusion Power Plants and Related Advanced Technologies with participation of EU

EU Power Plant Conceptual study "Near Term" models (A,B,AB)

Presented by P. SARDAIN (EFDA Garching)

Contents

- PPCS
- Model A
- Model B
- Model AB
- Plant layout
- Maintenance
- Conclusions

Power Plant Conceptual Study (stage 3)

- Demonstration of:
 - Credibility of fusion power plant design
 - Safety and environmental advantages of fusion power
 - Economic viability of fusion power
- Set of requirements issued by industry and utilities
 - Safety

- Operational aspects
- Economic aspects
- Four models (+1) studied as examples of a spectrum of possibilities, ranging from near term to advanced
- Economic safety and environmental analyses of these models were made

Main specifications of models A, B and AB

- A small extrapolation from present-day knowledge is assumed for both physics and technology
- In order to maintain the steady state operation, current drive will be used
- Performances of the divertor: relatively high peak loads (up to 15 MW/m²)

EUROPEAN FUSION DEVELOPMENT AGREEMENT

PPCS : course of the studies

 Systems code varied the parameters of the possible designs, subject to assigned plasma physics and technology rules and limits, to produce economic optimum.

Fusion reactor

Key parameters

- 1500 Mw_e
- Fusion power is determined by efficiency, energy multiplication and current drive power
- Given the fusion power, plasma size mainly driven by divertor considerations

Plants main features

		Model A	Model B	Model AB
	Net Electric Power (GW)	1.55	1.33	1.50
	Fusion Power (GW)	5.00	3.60	4.29
	Blanket Gain	1.18	1.39	1.18
	Plant Efficiency	0.31	0.37	0.35
	Bootstrap Fraction	0.45	0.43	0.43
	P _{add} (MW)	246	270	257
	DV Peak load (MW.m ⁻²)	15	10	10
	Average neutron wall load	2.2	2.0	1.8
Blanket	Major Radius (m)	9.55	8.6	9.56
	Structural material	Eurofer	Eurofer	Eurofer
	Coolant	Water	Helium	Helium
	Breeder	LiPb	Li4SiO4	LiPb
	TBR	1.06	1.12	1.13
DV	Structural material	CuCrZr	W alloy	W alloy
	Armour material	W alloy	W alloy	W alloy
	Coolant	Water	Helium	Helium
	Conversion Cycle	Rankine	Rankine	Rankine

P. SARDAIN

WCLL Blanket Concept (model A)

Eurofer as structural material, water as coolant, LiPb as breeder and neutron multiplier

P. SARDAIN

P. SARDAIN

Model A: Water-cooled Divertor

P. SARDAIN

© EFDA

Model A: Power repartition and primary system

Blanket Breeder Zone (MW)	3892
Blanket First Wall (MW)	1438
Divertor (MW)	984

Number of loops (blanket)	6
Number of loops (divertor)	2
Inlet/Outlet temperature (blanket) (°C)	285/325
Inlet/Outlet temperature (divertor) (°C)	140/167
Operating pressure (blanket) (MPa)	15.5
Operating Pressure (divertor) (MPa)	4.2
Heat Sink (blanket)	Steam Generator
Heat Sink (divertor)	Preheater
Maximum velocity in pipes (m/s)	20

O EFDA

Power conversion (model A)

O EFDA

Model A: R&D needs

- Development of a HHF water-cooled divertor concept operating at the same coolant temperature as the blanket cooling loop → higher efficiency
- Optimization of the attachment system
- Materials

HCPB blanket concept (model B)

Eurofer as structural material, He as coolant, Li4SiO4 as breeder, Be as neutron multiplier

P. SARDAIN

Model B: Segmentation

P. SARDAIN

🔅 EFDA

EUROPEAN FUSION DEVELOPMENT AGREEMENT

C EFDA

Model B: He-cooled divertor

- Divertor concept using helium as coolant and W as structural material
- Peak load of 10 MW/m² → necessity to optimize the heat exchange

Model B: Power repartition and primary system

Blanket Breeder Zone (MW)	3596
Blanket First Wall (MW)	656
Divertor (MW)	604
LT Shield	189
Number of loops (blanket)	9
Number of loops (divertor)	9
Inlet/Outlet temperature (blanket) (°C)	300/500
Inlet/Outlet temperature (divertor) (°C)	540/720
Operating pressure (blanket) (MPa)	8
Operating Pressure (divertor) (MPa)	10
Heat Sink (blanket)	Steam Generator
Heat Sink (divertor)	Superheater
Heat Sink (LTS)	Preheater

P. SARDAIN

Model B: R&D needs

- Development of a HHF Helium-cooled divertor
- Design update of the HCPB blanket with the aim of supporting blanket box pressurisation at full coolant pressure
- Open questions related to technology
 - blanket fabrication issues
 - the thermo-mechanical behaviour of the used pebble beds
 - Tritium retention in irradiated Beryllium
 - Beryllium material grade/alloy to use

Materials

HCLL blanket concept (model AB)

Eurofer as structural material, helium as coolant, LiPb as breeder and neutron multiplier

EFDA

Model AB: segmentation

P. SARDAIN

C EFDA

Model AB: Power repartition and primary system

Blanket (+HTS) (MW)	4478
Divertor (MW)	983
Number of loops (blanket)	9
Number of loops (divertor)	9
Inlet/Outlet temperature (blanket) (°C)	300/500
Inlet/Outlet temperature (divertor) (°C)	540/720
Operating pressure (blanket) (MPa)	8
Operating Pressure (divertor) (MPa)	10
Heat Sink (blanket)	Steam Generator
Heat Sink (divertor)	Superheater

Power conversion (model AB)

P. SARDAIN

© EFDA

Model AB: R&D needs

- Development of a HHF Helium-cooled divertor
- Open questions related to technology
 blanket fabrication issues
- Materials

EFDA

Plant general layout

🔅 EFDA

Maintenance scheme

Large sectors

EFDA

Minimize the number of items to be replaced

□ Availability: 76.5 % - 81.2 % (12 days to replace one sector)

Segmentation

- A too large number of modules (like in ITER: 420) would not allow to reach the availability target
- For the PPCS, the "large modules" maintenance concept has been considered

Handling Sequence

C EFDA

Handling device for large modules

Conclusions

- Models A, B and AB meet the overall objectives of the PPCS (design, safety, economics)
- R&D is needed
 - Materials
 - He cooled divertor
 - Attachment system
 - ...

* * *