

Mangets Design and Technology

E. Salpietro

Outline

- Introduction
- Electromagnetics and mechanical aspects of Tokamak devices
- Toroidal Magnetic Field system design
- Central Solenoid and outer coils design
- Superconducting cables R&D status
- Structural and insulation materials R&D status
- Conclusions

Introduction

- NET 1983-1988
- ITER CDA 1988-1990
 - Plasma Major Radius6.0 m
 - D.N. Vertical Elongation 95%
 - Plasma Current22 MA
 - Magnetic Filed at 5.8m / max. 4.9T/10.4T
- ITER EDA 1992-1998
 - Plasma Major Radius 8.1m
 - S.N. Vertical Elongation 95% 1.6
 - Plasma Current21 MA
 - Magnetic Field at 8.1m/max 5.7T/12.5T
- ITER FEAT 1999-today
 - Plasma Major Radius 6.2m
 - S.N. Vertical Elongation 95 % 1.7
 - Plasma Current15/17 MA
 - Toroidal Field at 6.2m/max5.3T/11.8T

The Tokamak: A Transformer Device

Sc. Magnet

Current feedthrough in horizontal position

ITER - EFDA Magnets R&D Programme - Magnet System Components

	Field (T)	Current (kA)
CS coil	13.5	42
TF coil	11.8	68
PF coil	4-6	45
Correction coil	< 6	10
Cryostat feedthrough	< 4	≤ 68
Current lead	< 30 mT	≤ 68
External current feeder	~ mT	≤ 68

Superconducting strands

- High field > 5 T
 - $-Nb_3Sn$
 - $E = Ec(J/Jc\{B,T,E\})^{n\{B,T\}}$
 - Heat treatment (650 °C, ~ 200 h)
 - Cromium coating (~ 2μm)
- Low Field < 5 T
 - NbTi
 - $-E = Ec(J/Jc \{B,T\})^n$
 - -No heath treatment required during coil manufacturing
 - -Coating Ni (~ 2 μm)

Typical measurement with new FBI setup

$J_{C}(B,T,\varepsilon)$ data

- Engineering critical current density (and critical current) of the EM-LMI wire as a function of applied strain at a magnetic field of 12 T and at temperatures of 4.2 K and 0.5 K increments between 5 K and 10 K.
- The symbols show the measured data, and the lines show the parameterization using the Interpolative Scaling Law.

Design criteria

- Forced flow cooling: nuclear heating, ohmic power removal and heat losses
- Stability: plasma disruptions, friction heat generation
- Quench protection
- AC losses
- Nb₃Sn strain limit
- D shaped TF coils with SS casing
- SS jacket material
- Segmented central solenoid
- TFC winding pack with Radial Plates?

Superconducting cable

- Cables 5 stages (3x3x4x5x6)
- Last-but-one stage wrapes
- Central cooling channel
- Jacket material SS
- Cooling He supercritical

Developed ITER Conductors - TF Model Coil

- Current: **80 kA** (4.5 K, 9.7 T)
- 316LN stainless steel jacket (Ø 40.7 mm) wound in radial plates
- Cable diameter: 37.5 mm
- 720 **Nb₃Sn** strands (1080 strands total)

Strand Layout

Joints

- Between pancakes
- Between coil and normal conductor
- Low resistance and uniform distribution

TFMC – Joints

Technical realisation of the joints

Cables are compacted in twin-material boxes of stainless steel and copper. The boxes are then soldered

TFMC - Joints Technical realisation of the joints

Shaking hand joint: inner joint of double pancake 1

Winding pack manufacturing

- Bending by multiple rollers
- Glass-kapton tape wrapping between turns
- Epoxy resin vacuum impregnation
- Glass-kapton tape vacuum impregnate for ground insulation

Conductor bending

Laser welding

TFMC
Winding Pack
after
Impregnation

ITER - EFDA Magnets R&D Programme - TF Model Coil

TFMC Operating Diagram

ITER - EFDA Magnets R&D Programme - TF Model Coil

TFMC (80 kA) + LCT (16 kA)

TFMC exceeded design values

TFMC (80 kA)

No performance degradation

ITER - EFDA Magnets R&D Programme - CS Model Coil

Coil Design Parameters

	CSI	CSMC IM	CSMC ON
Maximum Field	13 T	13 T	7.3 T
Operating Current	40 kA	46 kA	46 kA
Outer Diameter	1.57 m	2.71 m	3.62 m
Height	2.80 m	2.80 m	2.80 m
Weight	7.7 t	49.3 t	52 t
Stored Energy	11 MJ	640 MJ	

Developed ITER Conductors - CS Model Coil

- Current: **46 kA** (4.5 K, 13 T)
- Incoloy 908 jacket $(51 \times 51 \text{ mm}^2)$
- Cable diameter: 38 mm
- 1152 **Nb₃Sn** strands

Strand Layouts

ITER - EFDA Magnets R&D Programme - CS Model Coil

CSMC: Inner module

CSMC: Outer module

ITER - EFDA Magnets R&D Programme - CS Model Coil

CSMC successfully achieved design values

Small degradation (0.1 to 0.2 K) saturated after few cycles

ITER - EFDA Magnets R&D Programme - PF Insert Coil

Coil Design Parameters

		PFI	
Maximum Field		6.3 T	
Maximum Operating Current		50 kA	
Maximum Field Change		2 T/s	
Conductor length		49.50 m	
Main Winding Envelope	Outer Diameter	1.57 m	
	Inner Diameter	1.39 m	
	Height	1.40 m	
Height		1.40 m	
Weight		6 t	

Developed ITER Conductors - PF Insert Coil

- Current: **50 kA** (4.5 K, 6.3 T)
- 316LN stainless steel jacket (51 × 51 mm²)
- Cable Ø: 38.7 mm
- 1440 **NbTi** strands

Strand Parameters

- $J_c > 2700 \text{ A/mm}^2$ (5 T, 4.2 K)
- Strand Ø: 0.73 mm
- Cu:non-Cu ratio: 1.4
- Filament Ø: 9.8 μm
- Number of filaments: 2346

Reduction of PF Insert Superconductor

Evidence of stability limit from PFCI-FSS

ITER - EFDA Current Lead R&D Programme - Design of the 70 kA HTS CL

PART 1: Clamp contact with three Nb₃Sn inserts

PART 2: HTS module with Ag/Au sheated Bi-2223 tapes

PART 3: Conventional heat exchanger with Cu - discs

70 KA HTSC Current Lead

- The current lead is designed with respect to the requirements given in the ITER-magnet design document
 - <u>Location</u>: The current lead needs to be installed horizontally in coil-terminal-boxes CTB.
 - Safety requirement: The current lead has to withstand a loss of helium mass flow for 3 minutes at nominal current. To reach this goal the heat capacity of the HTS part has to be large.
- Current leads needed for ITER (total current of 2.5 MA):

Coils	No. of pairs	I _{max}	Type	V_{max}
TF Coil	9	68 kA	F	10 kV
PF Coil	6	45 kA	V	14 kV
Correction Coil	9	8 kA	V	3 kV
CS Coil	6	45 kA	V	10 kV

Installation in TOSKA

Conventional(LTS) 80 kA CL and Aluminium bus bar installed in TOSKA

70 kA HTS CL installed in TOSKA

ITER - EFDA 70 kA HTS Current Lead

- 68 kA steady state up to a warm end temperature of 80 K (T_{HTS} = 80 K)
- Quench temperature at 68 kA: 92 K
- 80 kA steady state (T_{HTS} = 55 K)
- Heat load into 4.5 K: 13.5 W
- Cold end contact: 1.9 nΩ
- LOFA (68 kA, T_{HTS} = 65 K): > 6 min before quench (ITER requirement: > 3 min)
- Poor screw contact between HTS module and heat exchanger at warm end (≈ 100 nΩ)

Issues for Nb3Sn cables

- Residual thermal strain
- Actual strain distribution in the cable during operation
- Effect of bending strain on performance
- Effect of current and magnetic distribution on performance
- Validation of design codes taking into account coupled fields (thermo hydraulic, mechanical and electromagnetic)

Bending Strain Tests - Jacketing of Single Strands

First trials to demonstrate the feasibility of the jacketing of single strands successfully performed in 2003:

- Strand diameter: 0.81 mm
- SS tube drawn $3.15 \rightarrow 2.04$ mm
- Change of jacket thickness due to drawing process negligible
- It will be tested:straight and at different diameters of curvature

Comparison of measurement with

Strand jacketed in stainless steel tube 0.1-0.2 mm thickness

K.-P. Weiss FZK/ITP

May 2004

Mechanical Modeling of ITER Superconducting Cables

Mechanical Modeling of ITER Superconducting Cables

Unit cell 3D mesh: 1998 elements

1979 nodes

7916 dof

Mechanical Modeling of ITER Superconducting Cables VAC Strand Thermal Residual Strain at 4K

• Nb3Sn filaments: compression stress state

final longitudinal strain: -0.271%

• Bronze: tensile stress state

final longitudinal strain: 0.468%

• Copper: tensile stress state

final longitudinal strain: 0.684%

Bending Strain Tests - Influence at high Compression

• Contribution of transverse load effects on I_c reduction maybe overrated $(I_c/I_{cm} \text{ almost independent on } \epsilon_B \text{ at } \epsilon_0 \approx -0.5 \%)$

[J. Ekin, 1980]

Current transfer length << cable twist peach

Strain sensitivity has to be checked for new advanced strand

DC Test Results (Bending Strain Inpact)

Ti jacketed Conductors :conductor A (residual strain about 0.3%) solder-filled conductor B(residual strain about 0.4%)

Bending Strain Tests - Current Transfer Length

- Measurement of the critical current at three different bending strains to check I_c behaviour
- Bending strain established by transferring reacted strands to different sample holder diameters
- Bending strain value defined by the ratio of the barrel sample holder diameter

EM/TH coupling

Tstrand is used in the EM part to compute coefficients (material properties). In the EM step $t \rightarrow t + \Delta t$, the EM module uses Tst @ t to compute the power sources. These are then used by the TH module to perform the TH step $t \rightarrow t + \Delta t$, and so on

Explicit EM/TH coupling

Thelma joint model

- CICC short segments
- Resistive saddles between the CICCs

Geometrical model of CICC segments

Bundle cross-section

Strand/macrostrand axis

$$\mathbf{OP}_{k-1} = \mathbf{OP}_k + r_k \cdot \cos(\omega_k s_k + \alpha_k) \cdot \mathbf{u}_{n_k} + r_k \cdot \sin(\omega_k s_k + \alpha_k) \cdot \mathbf{u}_{b_k}$$

Example

ITER-type CICC modelled with 17 strands + macrostrands

THELMA CABLE MODEL

- ♦ A current driven system is considered.
- ♦ A cable-element can be either a single strand or a strand bundle.
- ♦ The model is self consistent with given inlet and outlet currents or can be coupled with a termination/joint model.
- ♦ The model is aimed to simulate real size coils

Nb₃Sn Strand Specification

0.81 mm ±3 μm			
< 20 mm			
2 μm +0.5 μm / –0 μm			
Min. guaranteed: 200 A ^a Target value: 280 A ^b			
< 500 kJ/m ³			
> 20			
> 100			
0.9 – 1.5			
> 1.5 km			

 $^{^{\}rm a}$ equivalent to a non-Cu $\rm J_c$ of 800 A/mm², a Cu:non-Cu ratio of 1 and a strand diameter of 0.81 mm

^b Eequivalent to a non-Cu J_c of 1100 A/mm², a Cu:non-Cu ratio of 1 and a strand diameter of 0.81 mm

"Big" FBI facility

• subsize cable: 110 cm, Ø 2 cm

• split-coil magnet: 14 T

• maximum force: 100 kN

• maximum current : 10 kA

TFMC insulation system irradiation

ILSSSBS	ALSTOM 0°	ALSTOM _{Kapton} 0°
Unirr.	80 ± 4	81 ± 4
5x10 ²¹ m ⁻²	44 ± 3	50 ± 4
1x10 ²² m ⁻²	31 ± 4	35 ± 5

	ALSTOM 90°	ALSTOM _{Kapton} 90°
Unirr.	77 ± 4	75 ± 4
5x10 ²¹ m ⁻²	37 ± 4	45 ± 6
1x10 ²² m ⁻²	24 ± 3	27 ± 4

No fatigue-values available due to the low ILSS!

Search for Systems with higher radiation resistance

System Overview

August 2003

	TFMC 1	TFMC 2	Test 1	Test 2	(blended)	Test 3	Test 4	Test 5	Test 6	Test 7
Type	DGEBA	DGEBA	Cyanate Ester	DGEBA about 60%	Cyanate Ester about 40%	DGEBA purified	DGEBA	DGEBA compatible	DGEBA	DGEBA purified
Resin	Araldite F	MY745	AroCy-L10	PY306	AroCy-L10	MY790-1	CW229	MY790	LY1025/CH ****)	MY790-1
Hardener	HY905	HY905				HY1102	HW229	HY5200	HY906	HY1102
Additives	DY040	DY072 DY073	Mn Acetyl- acetonat in Nonyl-phenol		Mn Acetyl- acetonat in Nonyl-phenol	***)	(filled)**)	***)	Orlitherm 44	
Impregn. Temp.	75 +/- 5 °C	80 – 85 °C	40°C	70°C		50°C	70°C	70°C	80°C	75°C
Impregn. Viscosity	< 80 mPa s	< 80 mPa s	100 mPa s @25°C	350 mPa s	@25°C	350 mPa s @25°C	2000 mPa s @60°C	~500 mPa s @40°C	70 mPa s @80°C	350 mPa s @25°C
Curing Temp.	100 - > 135°C	90 - > 105°C	80°C gel/ 140°C	80°C 100-160°C	gel 5 hours	80°C gel/ 120-140°C	80°C gel/ 110-140°C	100°C gel 120-160°C/ +180°C Nh	100°C gel/ 130°C	70°C gel/ 120°C ****)
Supplier	Huntsman	Huntsman	Huntsman	Huntsman	Huntsman	Huntsman	Huntsman	Huntsman	ABB	Huntsman
Filler Material	R-Glass + Kapton H	R-Glass + Kapton H	R-Glass + Kapton H		Kapton H	R-Glass + Kapton H	Ca-Glass fibres	R-Glass + Kapton H	R-Glass + Kapton H	R-Glass + Kapton H
	Currently used	Currently used	Proposed by Huntsman *) high price		by Huntsman + 40% high	Proposed by Huntsman low price	Proposed by Huntsman	If available without filler (Huntsman)	Currently used	Proposed by Huntsman Iow price

^{*)} Huntsman is a follow-up company of Vantico which was a follow-up company of former CIBA-Geigy

^{**)} contains less than 0.1% of boron (100% is the full volume of impregnated material)

^{***)} highly purified, no metal compounds in resin and hardener.

^{****)}same resin system as Test 3, but reduced curing temperature

^{*****)} highly chlorine purified resin

Sc irradiation

Critical currents of both wires are enhanced after irradiation to $5x10^{21}$ m⁻² (E>0.1). \Rightarrow Next step: $1x10^{22}$ m⁻² (E>0.1 MeV).

ITER - EFDA Magnet Structures R&D Programme TF Coil Case

Model 1 Forged

Model 1: 316 LN forged and welded

Model 2: new high-Mn SS cast

Model 3: new high-Mn SS forged

Model 2 Cast

Mechanical data for forged 316LN steel

Table 28. Tensile and fracture toughness test results of the samples provided from the tube forging of Type 316LN material at 4.2 K and at 7 K.

Material designation	Young's	Yield	Ultimate tensile	Uniform	K_{IC}
test codes and sample	Modulus	Strength	strength	Elongation	JETT
orientation in ()	GPa	MPa	MPa	%	MPa√m
Forg. T601 (trans.)	209/209	1185/1165	1625/1635	46.5/40.5	238/163
Forg. L600 (long)	204/207	1113/1062	1620/1624	47/61	206/192
Forg. R602 (radial)	207/207	1140/1168	1457/1418	13/7	218/210
Forg. R602 (radial) A	199	1155	1467	15	_
Forg. T604 (trans.)	210	1010	1523	44	-
Forg. L603 (long)	201	1083	1525	45	_
Forg. R605 (radial)	209	934	1473	48	

^AThis specimen has a 12 mm Ø and the test was conducted in LHe, whilst all others are 4 mm Ø standard ones and tested at 7 K under gaseous helium environment.

Fatigue crack growth rate of aged Type 316LN and Incoloy 908 jacket materials at 7 K and at different load ratios. The newly developed cast steel's FCGR represent the measurements at 7 K in all three spatial orientation.

Conclusions

- The feasibility of the reactor coils with Nb3Sn strands has been demonstrated
- The feasibility demonstration of NbTi coils awaits the testing of the PFCI
- Advanced Nb3Sn strands allow an improved conductor performance
- Better understanding of current and strain distribution in the cable will allow reduction of design safety factors
- An advanced insulation system is being qualified for reactor fluence