Progress on Laser Induced Damage Studies of Grazing Incidence Metal Mirrors

Mark S. Tillack T. K. Mau Mofreh Zaghloul

Laser-IFE Program Workshop May 31-June 1, 2001 Naval Research Laboratory

Statement of Purpose and Deliverables

Statement of purpose

Our research seeks to develop improved understanding of damage mechanisms and to demonstrate acceptable performance of grazing incidence metal mirrors, with an emphasis on the most critical concerns for laser fusion. Through both experimentation and modeling we will demonstrate the limitations on the operation of reflective optics for IFE chambers under prototypical environmental conditions.

Deliverables (2 mo. delayed funding):

Measure LIDT at grazing incidence with smooth surfaces. Sept. 1, 2001

Model reflectivity and wavefront changes of smooth surfaces. Sept. 1, 2001

Measure effects of defects and surface contaminants onApril 1, 2002reflectivity, LIDT and wavefront.April 1, 2002

Model reflectivity and wavefront changes due to defects and April 1, 2002 contamination.

Budget: \$330k

Outline

1. Experiments

- a. Mirror fabrication and characterization
- b. Beam characterization
- c. Reflectometry
 - reflectivity at shallow angles
 - in-situ damage monitoring
- d. Damage results at grazing angles
 - Al 6061
 - Al 1100
- 2. Modeling
 - a. Scattering results
 - b. ZEMAX
- 3. Future plans

Several new surface types have been fabricated: *1. Diamond-turned flats*

Several new surface types have been fabricated: 2. Sputter coated substrates

- Ordinary Si wafers aren't flat enough (15 microns)
- Large polished substrates are expensive
- However, substrates can be recycled

Minimum Thickness of Sputtered Al Needed

Beam characterization has been installed

Spatial profile and wavefront of the Nd:YAG laser

Beam Smoothing with SBS

The reflectometer is fully functional and used for in-situ surface monitoring

In-situ reflectometry can measure surface changes not visible to the naked eye

Shallow angle reflectivity measurements of undamaged surfaces

Damage to Al 6061 at grazing angle

Several shots at 80°, 1 J/cm² peak

- Damage occurs at a higher fluence compared with normal incidence
- Silicide occlusions in Al 6061 preferentially absorb light, causing explosive ejection and melting
- Fe impurities appear unaffected

Al 1100 shows no apparent damage at 1 J/cm²

1000 shots at 85°, 1 J/cm² peak

Al 6061, for comparison

1000x

200x

Tools for modeling effects of damage on beam characteristics

Dimensional Defects		Compositional Defects						
Gross deformations, >	Surface morphology, <	Gross surface contamination	Local contamination					
CONCERNS								
 Fabrication quality Neutron swelling Thermal swelling Gravity loads 	 Laser-induced damage Thermomechanical damage 	TransmutationsBulk redeposition	• Aerosol, dust & debris					
MODELLING TOOLS								
Optical design software (ZEMAX)	Scattering by rough surfaces (Kirchhoff)	Fresnel multi-layer solver	Scattering by particles					

Specularly reflected intensity is degraded by induced mirror surface roughness

- The effect of induced surface roughness on beam quality was investigated by Kirchhoff wave scattering theory.
- For cumulative laser-induced and thermomechanical damages, we assume Gaussian surface height statistics with rms height .

- Grazing incidence is less affected by surface roughness
- To avoid loss of laser beam intensity, $\sigma / \lambda < 0.01$

Ray Tracing with ZEMAX

Tasks:

- Evaluate surface deformation from expected loads.
- Quantify allowable surface deformation (shape and size) to meet beam propagation requirements (spot size/location, intensity uniformity, absorption).

ZEMAX commercial software was installed

Example problem: Rays at object plane emitted

at three angles.

Illumination profile at image plane

Goals for next period of performance

- Compare damage on 99.999% Al with Al-1100
- Perform tests at 5 J/cm²
- Perform sub-threshold irradiation of amorphous Al to explore recrystallization
- Establish methods for creating contaminated surfaces
- Obtain samples for neutron irradiation
 - multi-layer dielectric mirror
 - Al mirror
- Exercise ZEMAX to assess wavefront degradation

Final Optic Threats and Planned Research Activities

Final Optic Threat	Requirement	Evaluation	Mitigation
Defects and swelling	Absorption loss <1%	60 Co, /n° irradiation	Annealing
(-rays and neutrons)	Wavefront distortion <0.1 µm	(Al, SiO ₂ , CaF ₂) PIE Modeling	Adaptive optics
Optical damage by	>5J/cm ² threshold	Test Al GIMM	Optimize surfaces
laser (LIDT)	(normal to beam)	Test LIDT of irradiated optics	Recondition surfaces
Contamination	Absorption loss <1%	Evaluate losses and	Calculate effect of
	2	damage due to thin	gas blocking
	>5 J/cm ² damage threshold	films	Evaluate feasibility of fast shutter
Ablation by x-rays	<10 ⁻⁴ monolayer per	Measure rate for Al,	Evaluate wavefront
	shot	SiO ₂ and CaF ₂ optics	distortion and pump
		Model very small ablation rates	power for gas puff
Sputtering by ionic	<10 ⁻⁴ monolayer per	Calculate sputtering	Analyze feasibility
debris	shot	with existing models	of mag. deflection
		and data base	Evaluate gas puff

Final Optics Program Plan

RADIATION DAMAGE (neutron and gamma effects)						
Scoping Tests: Irradiation & PIE (incl. annealing)						
Damage modeling						
LASER-INDUCED DAMAGE						
LIDT scoping tests	LIDT scoping tests for GIMM, materials development		tem Integration			
Laser damage modeling, 3 data from NIF			Cystem integration			
CONTAMINATION THREATS						
Modeling	Test simulated contaminants		Mitigation	System Integration		
X-RAY ABLATION						
Scoping tests (laser-based x-ray source) Modeling			Mitigation System Integration			
ION SPUTTERING						
Calculate sputtering, gas attenuation			Mitigation	System Integration		
FY 2001	FY 2002 FY 2003		FY 200	94 FY2005		

Normal incidence reflectivity of several metals

Wavelength, nm