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Several Key Processes Dependent

Chamber Clearing Modeling: o"choice of wall Configuration

Energy Source Chamber Dynamics Chamber Wall Interaction
Neutrons
Target Coolant
explosion ‘
Cavity Gas + Target & Wall Species
Products
+ Debris
I Photon energy deposition
: : : deposition
Typical time of flight to o Neutron + alpha ener gy
wall: lon transport & energy deposition deposition
X-rays (~20 ns) Heating & ionization Conduction
Fusion neutrons (~100 ns) Radiation Melting CEniEEen
. . Vaporization & coaling
Alphas (~400 ns) Gas dynamics (shock, convective .
Burn Products (~1 us) flow, large gradients, viscous Sputtering
: » dissipation Thermo-mechanicy
Debri lons (~1-10 us) ’ ) macr oscopic erosion
Condensation -
_ Radiation damage
Conduction Blistering (from bubbles of
Cavity clearing implanted gas) ==
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Outline of Presentation

e Chamber Wall Options

— Thermal and Lifetime Analysisfor (from ARIES-IFE study):
e C
e W
» Engineered surface (fibrous surface)
— Summary of Erosion and Tritium Retention | ssues
* Must consider armor options (besides C)

o Useof very thin armor on structural material to separate ener gy accommodation
function from structural function

o Separate Functionsas Required for More Effective Design

— Separately-Cooled and Replaceable Chamber Wall Region

» Effect on power cycle efficiency of operating first wall at lower temperature than
blanket based on target injection and/or lifetime requirements
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Lifetimeisa Key Dry Chamber Wall Issue

« Armor Material Option (C, W, engineered surface) to Help Accommodate
Energy Deposition
- Armor material does not need to bethe same as structural material

- Actually, separating energy accommodation function from structural
function is beneficial

* Protective Chamber Gas, e.g. Xe
- Effect on target injection
- Effect on laser

- UW has performed detailed comparative studies for different materials and
gas pressures (R. Peterson/D. Haynes)

e Goal:

Dry wall material configuration(s) which can
accommodate energy deposition and providerequired
lifetime without any protective gasin chamber
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X-ray and Charged Particles Spectra
NRL Direct-Drive Target

1. X-ray (2.14 MJ) nd -
2. Debrisions (249M9) .

3. Fast burnions (18.1 MJ)  ~
(from J. Perkins, LLNL)
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Photon and lon Attenuationsin Carbon and Tungsten
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Temporal Distribution of Energy Distributions
from Photons and lons Taken into Account

reamssnons o e Dramatic decreasein the maximum surface
Example Photon . : o :
Temporal Distribution temperature when including temporal distribution
éﬁ (From R. Peterson and of ener gy deposutlon
goz D. Haynes) - eg. T, for carbon reduced from ~6000°C to
g ~1400°C for a case with constant K, pon (400 W/m-K)

and without protective gas
(from Dec. 2000 ARIES-IFE meeting)
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Sublimation isa Temperature-Dependent Process
Increasing Markedly at the Sublimation Point

Carbon Tungsten
L atent heat of evaporation =5.99 x107 J/kg  Latent heat of evaporation = 4.8 x106 J/kg
Sublimation point ~ 3367 °C Melting point ~ 3410 °C
1.4x10° ] / 8.0x10° 7 8.8x10°8
&é 1.2x10° / 1-1X10'2E .-E 7.Ox106; II 7.7x10° =
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] L
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] / z 1.0x10°7 1.1x10
0.0x102500- T 00 200 3000 %00 4000 0.0x10° T T 03
Surface temperature (°C) 1.5x10° 2.0x10° 2.5x10° 3.0x10° 3.5x10° 4.0x10° 4.5x10

W surface temperature (°C)

Use evaporation heat flux asaf(T) as surface boundary conditions
to include evapor ation/sublimation effect in ANSY S calculations
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Consider Temperature-Dependent Propertiesfor
Carbon and Tungsten

e Cthermal conductivity asa
function of temperature for 1
dpa case (see figure)

e C gpecific heat = 1900 Jkg-K

Thermal Conductivity (W/m-K)

e W thermal conductivity and

dpa=displacement per atom ——1 dpa

specific heat as afunction of b e e e

300 400 500 600 700 800 900 1000 1100 1200

temperature from ITER

material handbook (see .
. Calculated thermal conductivity of neutron
ARIES web site) irradiated MK C-1PH CFC

(L.L.Snead, T. D. Burchéll, Carbon Extended
Abstracts, 774-775, 1995)

Composite Temperature (°C)

=
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Example Temperature History for Carbon Flat Wall
Under Energy Deposition from NRL Direct-Drive
Spectra

e Coolant temperature =500°C

e Chamber radius=6.5m AN
e Maximum temperature= 1530 °C
e Sublimation loss per year = 3x1013 m 'A
(availability = 0.85) oo \
C Chamber Wall /I
Coolant s NN
at500°C | : N
/ . 912.246 / /_\E§\\\ ;jil
Energy e [/ N R s s
Front | | / o
3 mm 3mm-FLAT-CWALL:Tini=500C, K=£ (T)
Evaporation Convection B.C. at
heat flux B.C at coolant wall: —
incident wall h= 10 kW/m?-K ~
UCSD
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Summary of Thermal and Sublimation L oss
Resultsfor Carbon Flat Wall

Coolant Temp. Energy Deposition ~ Maximum Temp. Sublimation L oss Sublimation L oss
(°C) Multiplier °O) per Shot (m) per Year (m)”
500 1 1530 1.75x10% 3.31x1013
800 1 1787 1.19x1018 2.25x1010
1000 1 1972 5.3x10Y7 1.0x108
500 2 2474 6.96x1014 1.32x10°
500 3 3429 4.09x1010 7.73x102

* Shot frequency = 6; Plant availability = 0.85

* Encouraging results: sublimation only takes off when energy deposition is
increased by a factor of 2-3

« Margin for setting coolant temperature and chamber wall radius, and

accounting for uncertainties -
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Example Temperature History for Tungsten Flat Wall
Under Energy Deposition from NRL Direct-Drive
Spectra

Key issuefor tungsten isto avoid reaching the melting point = 3410°C

AN
Coolant temperature = 500°C
Chamber radius=6.5m s e
Maximum temperature = 1438 °C
Coolant at 500°C | »
B A
\ / : =1
] v Lo — T~
—> S ” R —— &
V/ —— T
Energy —» oo / -
Front S e
_> 500 / (x10%* )
- TIME (S)
Evapor ation Convection B.C.at W compared to C: N
heat flux B.C at coolant wall: * Much shallower energy deposm_o_n from photons___
incident wall h= 10 kW/m2-K « Somewhat deeper energy deposition from ions <=

1, UCSD
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Example Temperature History for Tungsten Flat Wall Under 5 x
Energy Deposition from NRL Direct-Drive Spectra

o lllustrate melting process from W; melting point = 3410°C

* Include phase changein ANSY S by increasing enthalpy at melting point to
account for latent heat of fusion (= 220 kJ/kg for W)

« Mdtlayer thickness~ 1.2 um Separation =1 um
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Summary of Thermal Resultsfor Tungsten Flat

Wall
Coolant Temp. Energy Deposition Maximum Temp.
(°C) Multiplier (°C)
500 1 1438
800 1 1710
1000 1 1972
500 2 2390
500 3 3207
500 5 5300

 Encouraging results: melting point (3410°C) is not reached even when
ener gy deposition isincreased by a factor of 3

« Somemargin for setting coolant temperature and chamber wall radius,
and accounting for uncertainties

v\i
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Consider Engineered Surface Configuration for
|mproved Thermal Performance

 PorousMedia
- Carbon considered as example but
could also be coated with W
- Fiber diameter ~ diffusion
characteristic length for 1 ns
- Increase incident surface areaper  {jii)
unit cell seeing energy deposition il

j ncident
P\(\C‘da\‘ A
L
™~ ] fibe=J incident SINQ
‘ ESLI Fiber-Infiltrated Substrate
Largefiber L/d ratio ~100

v\i
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Example Thermal Analysisfor Fiber Case

¢ Incidenceangle = 30° Single Carbon 4
 Porosity =0.9 Fiber
o Effectivefiber separation =54 um
 Sublimation effect not included
1 mm
AN _ 10um
Convection B.C.
at coolant wall:
A h= 10 kW/m2-K ™
. 1236.054 /
L e AN - X Coolant at 500°C
W as TS Temperature
: Vi I p— Distribution in
R . P Fiber Tipjat 2.5 us
el T21
e N
: / Max. Temp.
E T45.371 /// — 13180C
TIHME (2]
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Summary of Thermal Resultsfor Carbon Fibrous

Wall
Coolant temperature =500 °C
Energy deposition multiplier =1
Porosity  Fiber Effective Incidence Maximum Temp.
Separation (um) Angle (°) (°C)
0.8 29.6 5 654
0.8 29.6 30 1317
0.8 29.6 45 1624
0.9 54 30 1318
C flat wall as comparison: 1530

 Initial resultsindicatethat for shallow angle of incidence the fiber configuration
perform better than aflat plate and would provide more margin

o Statistical treatment of incidence angle and fiber separation would give a better
under standing

v\i
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Outline of Presentation

e Chamber Wall Options

— Thermal and Lifetime Analysisfor (from ARIESIFE study):
e C
« W
» Engineered surface (fibrous surface)
— Summary of Erosion and Tritium Retention | ssues
 Must consider armor options (besides C)

o Useof very thin armor on structural material to separate energy accommodation
function from structural function

o Separate Functionsas Required for More Effective Design

— Separately-Cooled and Replaceable Chamber Wall Region

» Effect on power cycle efficiency of operating first wall at lower temperature than
blanket based on target injection and/or lifetime requirements

v\i
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1. Several Erosion M echanisms Must Be Considered for the Armor

2. Tritium Co-Deposition isa Major Concern for Carbon Because of Cold
Surfaces (Penetration Lines)

Carbon Tungsten
Erosion:
Melting No Yes(MP = 3410°C)
Sublimation/ Yes (SP~3367°C) Yes
evaporation
Physica Sputtering | Yes(peaksat ~ 1 Y es, high threshold
keV) energy
Chemical Sputtering | Yes(peaksat ~0.5 |No
keV and 800 K))
Radiation Enhanced | Yes (increases No
Sublimation dramatically with T,
peaks at ~ 1 keV)
Macroscopic Y es (thermal stress+ | No
(Brittle) Erosion vapor formation)
Splashing Erosion No Y es (melt layer)

Tritium Retention:

Co-deposition

Y es (with cold
surfaces with H/C
ratio of up to 1)

No

« Must Consider Alternate Optionsfor Armor (e.g. W)
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From the ARIES Tritium Town
Meeting (March 6-7, 2001, Livermore
(IFE/MFE Discussion Session):

(http://joy.ucsd.edu/M EETINGS/0103-ARIES-TTM/)

» Carbon erosion could lead to tritium co-
deposition, raising both tritium inventory
and lifetimeissuesfor | FE with a carbon
wall. Redeposition/co-deposition requires
cold surfaces which would exist in the
beam penetration lines and pumping
ducts.

(For H/C=1,609g T per 1lum C for R=6.5m)

» M acr oscopic erosion might bea more
important lifetime issue than sputtering
and sublimation for | FE operating
conditionsfor high energy ions (>>1 keV)

* Overall, therequired R& D effort for | FE
armor material should not be
under estimated

=
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Conditions Assumed for ITER ELM’s, VDE’sand
Disruptions Compared to Conditions Associated with a
Typical Direct Drive Target | FE (latest NRL target)

ITER Type-l ITER VDE's ITER Typica IFE
ELM’s Disruptions Operation
(direct-drive
NRL target)
Energy <1 MJm? ~50 MIm? ~ 10 MIm?* ~0.1MJIm*
L ocation Surface near div] surface surface bulk (~mm’s)
strike points
Time 100-1000 ps ~0.3s ~1ms ~1-3ns
Max. melting/ melting/ melting/ ~ 1500-2000°C
Temperature | sublimation sublimation sublimation (for dry wall)
points points points
Frequency Few Hz ~ 1 per 100 ~ 1 per 10 ~65s!
cycles cycles
Base 200-1000°C ~100°C ~100°C ~>500°C
Temperature

From ARIESTTM:

. Overall, therequired R&D effort for I|FE armor material should not be under estimated

However:

. We should make the most of existing R& D in MFE area (and other areas) since

conditions can be similar within ~1-1.5 order of magnitude (ELM’svsI|FE)

May 31-June 1, 2001
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Separ ate Near-Surface Energy Deposition and Erosion
Accommodation From Wall Structural Function

Possibility of Usinga Very Thin Armor (~10-100 um) on the Structur al
Material (e.gW on SIC,//SIC)

— Most issues linked with armor itself and not affecting integrity and lifetime of
structural material

— Behavior of thin armor under transients

* Aim to use high temperaturetransientsto alleviate ther mo-mechanics and tritium

issuesin thin layer (e.g. Implanted tritium within the thin armor layer could diffuse out to
the high temperature, high diffusivity surface region and escape)

— Lifetime
» Possibility of repairing armor in-situ?
— Fabrication to minimize any thermal expansion discrepancy

* Possibility of gradually transitioning from one material to other (e.g. CVD in
porouslayer or gradual deposition)

 ASDEX (Garching, Germany) resear chers have some experience on W deposition
on C

e Contacted H. Bolt to set up an information meeting on July 16 and a visit to
Plansee (Austrian manufacturer) to discusstheir experience from MFE and its

possible application to IFE .
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Outline of Presentation

e Chamber Wall Options

— Thermal and Lifetime Analysisfor (from ARIESIFE study):
e C
« W
» Engineered surface (fibrous surface)
— Summary of Erosion and Tritium Retention | ssues
* Must consider armor options (besides C)

o Useof very thin armor on structural material to separate ener gy accommodation
function from structural function

o Separate Functionsas Required for More Effective Design

— Separately-Cooled and Replaceable Chamber Wall Region

» Effect on power cycle efficiency of operating first wall at lower temperature than
blanket based on target injection and/or lifetime requirements
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Use ARIES-AT Brayton Cycle as Exampleto lllustrate Effect on
Overall Cycle Efficiency of Running a Low Temperature
Chamber Wall and a High Temperature Blanket

Min. He Temp. in cycle (heat : First wall
sink) = 35°C

3-stage compression with 2
inter-coolers

. .. S ;%lm LiPb blanket
Turbine efficiency = 0.93 10 oot
9 11 - B
icCl AN ntermediate
Compl’l’ efﬁClency = (0.88 I\n\tercooljl IEerCOOIEjz ) Int me t
S Lo 3
Recuperator effect. =0.96 5 ;l 7 % 1

CycleHefractional AP = 0.03 compressor2 ~ 7" o,

Compressor 1

| nter mediate Heat Exchanger 4 Foos
AT(Pb-17Li/He) ~50°C oo
Heat |Fi|e>j(ect|on
==
- . . , UCSD
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Chamber Wall He Temperature Dictated by Maximum
Cycle He Temperature and Compression Ratio

0_60 T R L L L L ?'00 - 0,60 1 L L 1 1200
0.59 - [ E z': 1 - 1100
] (650 .S bt - {000
g [].58-: : T’ P 057 - - 900
3 057 [ - 5 Ui . 00
= : 600 7 = 055
= 0.56 - [ 2 E . 700
TJ : - 3 L 03
T:i [].55-E :_550 g 5. i - 600
“ 0544 | E 052 T
: [ ] 400
0.53 drr et 500 & -
850 900 950 1000 1050 1100 1150 L i : ; : I . s
Cycle He Maximum Temperature (*C) Total Compression Ratio
ucC

Chamber Wall He T, (*C)

A
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Total Thermal Power in Chamber Wall Region

 SiC/LiPb chamber
 NRL target: 161 MJyield, 6 Hz
e 4mFW radius, G~ 3.4 MW/m?

e Peak heating is 15 W/cm? and varies as
(4/R)2with FW radius

o ~800 MW total nuclear heating in
FW/B/S

« Fraction of output energy:
— X-rays + ions+ gamma = 29%
— Neutrons= 71%
e Assume
— multiplication factor of 1.1
— ~4% nuclear heating in FW
30% of total power in chamber wall region

May 31-June 1, 2001

Nuclear Heating in First Wall

[ ARIE
[ SIC/LiPDb

pd
el

="

4
From Laila ElI-Guebaly
W Fusion Technology Institute
University of Wisconsin - Madison
v\—
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ARIES-ST Powe Parameters

Blanket
Blanket Sep. :
Pb-17L1 (70% of
.0. ARIES-AT

IHX

>

~50°C

He

o

(30% of Thermal Power)

>

_ in T out
1 v
Pb-17Li Oul  He
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Average Temperature of FW He Coolant ("C)

The Chamber Wall Temperature can be Maintained < 900 K
to Reduce Radiation to the Target while Maintaining an
Acceptable Cycle Efficiency

900

Example Case:

] Cyclen _
O Ml e For a AT, of ~100-150°C
N\ and compression ratio of
700-;_ 0.56 N Maximum |
| o N N Cydle He 4.5, theavg. surface T,
05 N Temp. (°C) — . )
o T~ wiaine | at target injection can be
1 050 N I
s0f— PSS, — |owered to ~600°C while
o \\\\\‘\\\ 950 JPRICI
400 0.0 - - - maintaining a cycle
T & | efficiency of 50%
——— 650
7100 ) N S R S e N
1 2 3 4 5 6 7
Pressure Ratio
v\i
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Concluding Remarks

e Chamber Wall Options

- Erosion lifetime estimates very encouraging for both W and C without protective chamber gas
Sever al mechanisms need to be better defined for | FE operating conditions, in particular for C
Tritium co-deposition isa major concern for C and it is essential to consider alter nate options
Use of athin armor region beneficial to separate the accommodation of energy deposition and high
loading transients from the structural function
W isan attractive armor candidate (if melting can be avoided), which should be further
investigated, including assessing fabrication methods and the possibility of in-situ repair

 Some Key Material Issueson Thermo-M echanical Behavior, Erosion, Tritium and
Fabrication Must Be Further Addressed

- Overall, therequired R&D effort for | FE armor material should not be underestimated
- We should makethe most of existing R& D in MFE area (and other areas)

o Separately Cooled Chamber Wall Region
- Based on a Brayton cycle example, the chamber wall temperature can be maintained < 900 K to
reduceradiation to thetarget (or if required by lifetime consider ation)while maintaining an
acceptable cycle efficiency

» Impact on Chamber Clearing Code
- Must prioritize erosion mechanismsfor C: which onesto include and when?

- Must include key processesfor W (melting, evapor ation and condensation) =
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Modeling Porous Fiber Configuration

Probability for energy front to contact fiber:
over first unitcell, Py = d/y
over second unit cell, P, = (1-P ) d/(y-d)

@ © © © over third unit cell, P5 = (1-P;-P, ) d/(y-2d), etc...
; ; up to P,=(1-P1-P5-...P,.1) d/(y-(n-1)d)
. Y where n=y/d
: >
e e e : e Yeff ZYP1+2yPo+3yPs..+nyPy
............. Fiber Density, (1-¢) = nd%/4y*
For €=0.9 and d=10um, y=28um, Y ¢ = 54um
Energy For £¢=0.8 and d=10um, y=19.8um, Yq¢s =29.6um
Front ) Energy Deposition
A >
Y,
L o ‘

o

High Porosity =

Carbon © }

Fiber Surface -
g

\/ ‘ Yi'
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Photon+lon Energy Deposition In Fiber

Example case

- Incidence angle = 30°
Porosity = 0.9

Fiber Length =1 mm

Fiber Separation = 54 pm 6 = 36°

- Fiber diameter = 10 um e
. . . | .
- Unit cell dimension = 28 um 2 R B O
. . . _ B ! ‘_ir“"-._\_h_ | i-h'k-__
- Effectivefiber separation = 54 um . g SN S
£ N : T
E -H!"‘- | “i.‘“. I MI
ﬁ 7.5w | .x-"‘-i. | ““—.‘_\_{1‘% |
o ~. . | "_'\_. . [ |
E 1ud —/J ﬁ xi"-x_i H:"“'u.h} |
~ TN
! ™
'l #I |
1000 Z2 '- i
800 10
.
=
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