

INTEGRATED PLAN FOR MATERIALS R&D IN LASER INERTIAL FUSION ENERGY (IFE)

L. Snead (ORNL), N.M. Ghoniem (UCLA), J. Sethian (NRL)

Naval Research Laboratory (NRL)

Washington, D.C.

May 31- June 1, 2001

 Statement of Objectives;
 Key Science and Technology Challenges;
 Framework and Integration Logic;

 Approach;
 On-going Activities;

Development of Material Systems and Components for High Average Power Density Laser Optics;

- Develop both reflective and transmissive optics;
- Investigate effects of laser, X-ray, neutron and ion/debris;
- Critical issue for transmissive optics : degradation of transmissivity as a result of color center formation;

Considered materials : SiO₂, CaF₂, MgF₂ and Al₂O₃;

Critical issue for reflective optics: degradation of the Laser-Induced Damage Threshold (LIDT) by surface deformation mechanisms;

Considered material systems: FCC metals (e.g. Cu & Al), BCC metals (e.g. Mo & W), SiC, Layered structures and innovative design concepts ;

Design objective:

- Minimize (or compensate for) gross structural deformation by gravity, thermal and mechanical loads;
- Control microscopic surface deformation caused by material defects.

Development of Reliable Chamber Structures and Components for the IFE Dry-wall Concept;

Geodesise Key Issues:

- Pulsed neutron damage;
- Intense X-ray effects;
- Effects of repetitive thermomechanical shock Loading.
- Material Systems : engineered high-temperature composites, with variants of C/C, C/SiC, SiC/SiC; (2) Refractory alloys (W & Mo); ODS Ferritics; Layered structures.

(1) Pulsed Neutron Effects on Material Degradation:

- Key Issue: Effects of damage rate (6-7 orders of magnitude larger than MFE) and inter-pulse transients on microstructure & properties.
- **Common Issues with MFE:**
 - High rates of gas generation in C/ SiC;
 - Burnup and stoichiometric changes;
 - SiC: Degradation of K_{th}, micro-cracking, differential swelling, hermiticity.
 - C: Dimensional stability (i.e. shrinkage/ swelling);
- Questions: (1) property extrapolation; (2) materials engineering; (3) effects of pulsed irradiation & excessive gas generation.

(2) Pulsed X-Ray Effects on Surface Ablation:

- Mechanisms of Radiation Enhanced Sublimation (RES) in intense non-equilibrium conditions;
- Surface modification technologies for materials engineering;
- Photon-surface interaction processes:
 - Threshold events;
 - Effects of surface defects, segregation & contamination;
- Cumulative X-ray pulsing effects on sub-threshold events;
- **Effects on degradation of optics.**

(3) Synergistic Neutron & Thermomechanical Damage to Structural Components;

- **Transient pressure and surface loading effects:**
 - Stress waves, vibrations;
 - Gradual destruction of fiber/ matrix/ interphase properties.
- Degradation of strength by neutrons/ thermomechanical loads;
- Realistic lifetime and reliability limits, which account for damage evolution mechanisms;
- **Integration of component design is necessary.**

(4) Control of Macroscopic and Microscopic Surface Deformation of Reflective Optics:

- Multiple length-scale deformation by: differential swelling, thermal expansion, gravitational & mechanical loads, sub-surface defects & fatigueinduced dislocation motion;
- Macroscopic deformation: >> control via deformable mirrors and active control loops;
- Microscopic deformation: >> control via materials design, layered structures and coatings.
- **Issues:**
 - Length-scale limit for active deformation control ?
 - Function separation into optics & mechanical?

(5) Mechanisms of Laser-Induced Damage in Reflective Optics:

- □ LIDT is caused by surface and near-surface defect generation. For a single-shot ~ 1-10 J/cm².
- Amorphous & engineered coatings can improve LIDT for single shot (amorphous Ni >> 40 J/cm²).
- Data and models on multiple-shot LIDT are lacking. Limited data shows a factor-of-ten reduction after 10000 shots.
- Role of microstructure engineering (e.g. coatings, surface modification techniques & nano-structured multi-layers)?
- **Effects of dust, debris and neutrons?**

(6) Mechanisms of Optical Absorption in Transmissive Optics:

- Mechanisms of oxygen-deficient centers (F-centers), strained Si-O bond centers, E+ centers and nonbridging hole centers have been determined.
- Fluence limits for concentration buildup of color centers?
- Annealing kinetics, agglomeration & interaction with H, T, and He?
- Transmutation effects? Latkowski calculates 27.5 appm/FPY H, 69.1 He, 54 C, 2 N, 15 Mg, and 4 Al.
- Transient effects: in-situe versus ex-reactor behavior?

11

(7) Safety and Environmental Impact of Materials:

- The interaction of tritium with ceramic fiber composites (graphite and SiC) and refractories?
- The attachment, release and diffusion of hydrogen isotopes in graphite and SiC?
- Safety and environmental limits on alloy compositions can be leveraged from MFE studies.

- "Cradle-to-Grave" approach;
- Balanced Mix between:
 - Fundamental understanding of mechanisms;
 - Integration of material and design concepts;
 - Data-base generation for IRE and ETF.
- **Experiments:**
 - Collection of a database;
 - Motivated by theoretical ideas and concepts;
- **Theory & Modeling:**
 - Validated by experiments within the program;
 - Advanced models of structural performance and reliability.

X-Ray Ablation Experiments and Analysis of Optics (LLNL):

- □ IFE-relevant x-ray fluences may be as low as 10 mJ/cm² (below the single-shot ablation threshold)
- The repetitive nature of the insult experienced by the final optic (>10⁸ shots) is to be investigated;
- Falcon Laser & Z-pinches (5-100 mJ/cm² x-ray pulses in a few nsec) will be used for 10⁴-10⁵ shots;
- A physical model of rapid surface heating and electronic excitation of surface states, followed by ejection of ions will be developed.

Given Series Price States and Series Price Price States and Series States and Serie

- Annular Core Research Reactor (ACRR) at SNL will be used;
- Extremely pure materials (CaF₂) will be used to study the effects of impurities;
- Existing SiO₂ samples with ~5 year IFE-equivalent doses (irradiated at LANSCE in 1995) will also be tested;
- Additional materials (e.g. MgF₂ and Al₂O₃ & reflective optics?) will also be tested.
- **Thermal annealing studies to determine kinetics.**


MD Damage Simulations in Optical Materials (LLNL):

- Large-scale MD simulations of fused silica will be used to characterize the recoil-induced damage in terms of density, coordination, ring statistics and correlation.
- Model will be related to the extensive experimental data available for fused silica ?
- Research will be useful in the future to predict the response of candidate materials for the final optic.

MD Damage Simulations in Chamber Materials (LLNL):

- Study defect production and migration in C & SiC (?)
- **Construct** a global model of defect production and accumulation.
- **Compare results (?) with those for continuous irradiation and experimental measurements.**

- Pulsed Fusion Neutron Source Development (U. Texas):
 - Measure the fusion yield from exploding clusters with 10 J laser pulses using the JanUSP laser at LLNL;
 - Explore the yield per shot as function of laser pulse width, and the yield increase as the clusters are made larger;
 - How will these experiments be correlated with MD studies?

18

□ IFE Final Optics Neutron Irradiation (LANL):

- Using LANSE and WNR, radiation effects on SiO₂, CaF₂ transmissive optics will be investigated.
- Pre- and post-irradiation examination of irradiated samples will be carried out.
- Point defect models, to determine the concentration of color centers in irradiated samples will be correlated to measurements.

- Laser Induced Damage Threshold (LDIT) of GIMM (UCSD):
 - The goal is to experimentally determine LIDT at grazing incidence with clean surfaces;
 - The reflectivity and wave front changes of clean surfaces will also be modeled;
 - The effects of surface contaminants on reflectivity, LIDT and wave front will be measured and modeled.

Conclusions

Very challenging scientific and technical issues for IFE materials require a dedicated, self-consistent and integrated R&D approach.

Augmentation and focusing of on-going activities are recommended;

A detailed R&D plan has been worked-out, with ample opportunity for modifications and improvements.

