Target Injection/Positioning Update

Presented by Ron Petzoldt

Neil Alexander¹, Lane Carlson², Dan Frey¹, Jonathan Hares³, Dan Goodin¹, Jeremy Stromsoe², and Emanuil Valmianski¹

> HAPL Project Review Sante Fe, NM April 8-9, 2008

1. General Atomics

2. UCSD

3. Kentech Instruments, UK

Targets are loaded, charged, released, tracked and steered in a vacuum chamber

20 µm placement accuracy required

Recent progress in target injection and positioning (target steering)

- 1. Achieved 13 μ m final placement repeatability (1 σ) in each transverse direction with solid delrin spheres.
 - Centroid Offset X=-3 µm, Y= 6 µm
 - Designed, built and tested an improved target release mechanism
 - Revised LABVIEW code to properly feedback charge to mass ratio changes to calculated acceleration, velocity and position

2. Achieved 9 μ m X & 7 μ m Y repeatability (1 σ) with 1 mg shells!

- Centroid Offset X=-1 µm, Y= 4 µm
- Improved charge measurement sensitivity
- 3. Continued electrostatic accelerator work
 - Procured and tested electrode circuit boards
 - Designed, fabricated and began testing electronics and optical components for axial position measurement
 - Designed vacuum chamber extension and mounting for accelerator components

New release mechanism has reduced system vibration during steering

Old

4 points of contact Hard stop

3 points of contact Soft stop

Vibration comparison Stationary targets with mechanism activated

GENERAL ATOMICS

New

Example Labview screen shot shows accurate target steering

IFT\P2008-015

Example Labview screen shot shows accurate target steering

We achieved 13 µm target positioning repeatability with solid delrin targets

 $\sigma_x = 13 \ \mu m \ \sigma_y = 13 \ \mu m$ • X offset = -3 μm , Y offset = 6 μm • 23 of 30 in 20 μm radius from aim point • 2 to 4 times better than best previous results...

Charge measurement must be more sensitive for low-charge hollow shells

IFT\P2008-015

Excellent target positioning repeatability achieved with hollow shells

 $σ_x = 9 µm σ_y = 7 µm$ • X offset = -1 µm; Y offset = 4 µm
• 27 of 30 in 20 µm radius from aim point
• 5 times improvement!!

Last 30 consecutive targets, but we occasionally have had problems

- Measured target charge changes, initial target transverse velocity increases
- Probably due to static charge in vicinity of target release
- Currently correct by venting vacuum and use of polonium strip
- UV light is possible solution

IFT\P2008-015

An electrostatic accelerator provides increased speed and clear tracking beam path

letter General Atomics

Electrodes and crossing detectors were tested

1 kV standoff between electrodes on single board demonstrated

IFT\P2008-015

IF-E99 LED 875-1050 μW @20 mA

IF-D95 Photologic Detector High TTL at 1.0 µW

We tested the axial position monitoring system

We designed and fabricated circuit boards for LED's and photo-logic detectors

Detectors 24 boards LED's 24 boards

Extension for vacuum chamber designed to support LED's and detectors

8 boards mounted on each of 6 levels

Summary of injection/positioning progress

In-flight target steering substantially improved

- Achieved 9 μ m X & 7 μ m Y repeatability (1 σ) with 1 mg shells!
 - Centroid Offset $X = -1 \mu m$, $Y = 4 \mu m$
 - Low-vibration target release mechanism developed
 - Improved charge measurement sensitivity
 - Static charge issues may require more work

Electrostatic accelerator is under construction

- Procured and tested electrode circuit boards
- Designed, fabricated and began testing electronics and optical components for axial position measurement
- Designed vacuum chamber extension and mounting for accelerator components

