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Laser profile and target spectra are the first ingredients in 
determining final optic temperature and stress conditions

• With consideration of system geometry, the raw target output spectra for 
x-rays and burn & debris ions can be translated into inputs for RadHeat 



RadHeat is a transient heat transfer code that can handle 
multilayer targets in pulsed radiation environments…
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• Robust implicit time-stepping, temperature dependent material properties, 
flexible meshing and a host of other features make RadHeat an ideal tool 
for studying transient thermal processes in IFE chamber component 
studies   



… that has been benchmarked with good success
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• Response  of flat plate to symmetric 
convective surface heating

• Response of semi-infinite wall to heating 
from penetrating photon irradiation



Both reflective and transmissive candidates are being 
considered for IFE final optics

GIMM   

Fresnel   

• The base-case KrF (4ω) final optic is a grazing incidence metal 
mirror (GIMM) made from aluminum and oriented 85° to achieve 
99% reflectivity

• DPSSL (2ω or 3ω) also has the option of using a transmissive
SiO2 Fresnel lens with 5% absorption when at 300 C



Fluence limitations on both approaches must be put in the 
proper context   

8.7e-01 J/g2.9e+01 J/g
Specific heating to 
optic

1.0e-01 J/cm24.4e-03 J/cm2

Normal to beam 
fluence absorbed

2.0e+00 J/cm24.4e-01 J/cm2

Corresponding optic 
normal fluence

2.0e+00 J/cm25.0e+00 J/cm2

Normal to beam 
laser fluence goal

FresnelGIMM @ 85°



We simulated several optic configurations using RadHeat

• A reflective Al GIMM at 26 m from chamber center subjected to a KrF
laser pulse and output from a 350 MJ target at 85°

• A transmissive SiO2 Fresnel lens also at 26 m subjected to a DPSSL 
laser pulse and the same target output used for the GIMM

• A Fresnel lens identical to the situation above but without ion 
irradiation

The final case indicates what would happen if a successful ion 
deflection scheme were employed



The GIMM run shows that while the temperature response 
may seem reasonable, stresses will could be significant
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• Compressive surface stresses 
could cause the optic to yield 
in compression and pose a 
fatigue or cracking threat

• The laser pulse will generate 
the greatest temperature spike 
with a magnitude of ~ 30 
degrees



The Fresnel run indicates ion irradiation will cause the 
silica to melt
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• Laser has virtually no 
heating effect on 
transmissive optic due to 
the volumetric nature of 
energy deposition

• Reduced thermal 
conductivity bottles ion 
energy in thin deposition 
layer leading to surface 
melting 

SiO2 Melt Temperature (1600 K)



Ion deflection will therefore be needed for Fresnel optics
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With ion deflection, surface temperatures of silica are 
much more reasonable
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• The low thermal expansion of 
silica makes it exceptionally 
resistant to thermal shock 
from the x-rays 

• Without ion irradiation, the 
Fresnel lens will experience 
temperature spikes from x-rays 
similar to those the GIMM sees 


