Path to a direct-drive ignition facility for fusion energy research that requires substantially less laser energy

NRL Laser Fusion

High Average Power Laser Program Workshop Lawrence Livermore National Laboratory 20 June 2005

> Presented by Steve Obenschain Plasma Physics Division U. S. Naval Research Laboratory

Work conducted by NRL Laser Fusion Research Team Special thanks to Denis Colombant for rapid advances

- Increasing the implosion velocity from the nominal 300 km/sec to 400-500 km/sec substantially reduces the energy needed for ignition.
- These higher velocities can be achieved by various combinations of increased drive intensity and increased pellet aspect ratio (radius to thickness)
- The best route for hydro-instability is increased drive intensity
- The upper bound on intensity is set by deleterious laser-plasma instabilities whose thresholds tend to scale as $I\lambda^2$
- The combination of a factor of 2 advantage in λ^2 and >THz bandwidth gives the KrF laser an advantage
- Our calculations indicate ignition with KrF at about 140 kJ and gains >20 at 250 kJ

Low Energy KrF-driven target produces gain with high laser intensity and implosion velocity

Parametric studies utilized conventional pulse shapes and those with "spike" pre-pulses that can increase hydro-stability

Gain increases and optimum implosion velocity decreases with laser energy

NRL Laser Fusion

 $(\lambda = 248 \text{ nm}, I = 2.2 - 2.5 \times 10^{15} \text{ W/cm}^2)$ Conventional 100:1 pulse shape 60 4.06 40 5 4.94 20 implosion velocities (10^7 cm/sec) 0 0.3 0.1 0.5 laser energy (MJ)

Gain increased with addition of optimized spike!

Lots of room to trade off gain for stability if needed

New (2005) vision and plan for laser fusion energy

Smaller lower-cost Fusion Test Facility (FTF) based on new pellet designs

Basic laser fusion technology

- Krypton fluoride laser
 - Diode-pumped solid-state laser
 - Target fabrication and injection
 - •Chamber materials and optics

Target design & physics

- 2D/3D simulations
- 1-30 kJ laser-target exp.

Develop full-size components

- Power-plant laser beamline
- Target fab/injection
- Power plant & FTF design

Ignition physics validation

- Calibrated 3D simulations
- LPI experiments

Phase III

1999-2006

Phase II

2007-2013

FTF operating ~2018

Fusion Test Facility (FTF)

- 0.25 MJ laser-driven implosions @ 5 Hz
- Pellet gains of ~20
- 20-30 MW of fusion thermal power
- Develop chamber materials & components.
- Upgrade path to 0.5 MJ and ~150 MW fusion power

A Long-Term U.S. Strategy for Nuclear Energy

There will be formidable competition to fusion power.

➤The NRL laser fusion program is fully committed to exploring and developing the path to a lower laser energy high-rep ignition facility.

➢Design studies also indicate that we may be able to significantly reduce the minimum laser energy needed for the fusion power plants. (<1 MJ?)</p>

>We invite and expect contributions by the other HAPL participants