Target Injection Survival Plan:

Concepts, Methods and Experiment Design/Equipment Commissioning

M. BOBEICA, D. R. HARDING, R. Q. GRAM

University of Rochester Laboratory for Laser Energetics

Definition of the problem addressed, reasons to approach it, and modalities of investigation

• Goal:

Quantify the *response of a target* to the thermal environment of the fusion reaction chamber (hot gases, radiation heat loads).

Acquire and apply experimental data into a *thermal model* to describe *heat flow* through the target.

• Experimental method:

Produce the environmental conditions and processes undergone by the target in the fusion chamber and measure *sticking and accommodation coefficients* of Xe (v, T, ρ) on an 18 K D₂ target.

• Monte Carlo calculations will guide experimental design.

Experiment Concept and Design

Environmental conditions relevant for target injection

- Range of conditions that can be studied relative to target injection:
 - D_2 target at ~14 to 18.7 K

- Maximum incident energy flux at target
 - 330,000 W/m² for 10^{23} atom/m³ (p = 3.1 torr at 300 K)
 - 25,000 W/m² for 10^{22} atom/m³ (p = 0.31 torr at 300 K)

Simulated conditions inside the fusion chamber

Response of a target to the heat flux (from previous Monte Carlo calculations)

- 6-mm target injected at 100 or 400 m/s
- 6-m radius chamber

Heat load is a strong function of accommodation and sticking coefficients

Experiment Concept and Design

Equipment

- Surrogate D₂ target (2 mm diam)
 - to be attached to a "cold finger" in thermal contact with the second stage of a cryostat
- 40 W cryostat at 20 K
 - low vibration device

• Thermal gas cracker + supersonic nozzle + thermal radiation shield

- provide Xe atoms flux (velocity 400 m/s)
- Xe atom beam heated at 3000 K by electron bombardment, in a tungsten capillary
- protect the target against thermal radiation
- Compound molecular pump
 - volume flow rate-2400 L/s

Experiment Concept and Design

General description of the experimental setup

- (1) Cryostat
- (2) Vacuum chamber with liquid N_2 tank
- (3) Molecular pump
- (4) Thermal gas cracker
- (5) Thermal radiation shield
- (6) Target
- (7) Instrumentation
- (8) RHEED gun

Nozzle design—to provide the required gas velocity and temperature **Radiation shield design**—attached to the thermal gas cracker minimize radiation load to the target assembly

- Measure Xe condensation on target surface (sticking coefficient for different dm/dt, v, T)
 - Sticking coefficient = the absorbed atomic flux/incident flux supplied by source

Method employed: reflection high energy electron diffraction (RHEED)

- Measure the rate of Xe film growth → the heat of condensation and size of the cold bow wave in front of the target
- Measure the total heat flux (accommodation coefficient)
 - Accommodation coefficient = the fraction of heat transferred between the surface and the molecule ($E_{reflected}/E_{incident}$)

Method employed: 3^o method—thermal conduction/volumetric phase ratio

BHEED method: <u>Reflection High Energy Electron Diffraction</u>

- A high-energy beam from an electron gun (~20 keV) is directed at the target surface at a very small angle.
- A phosphor screen shows a diffraction pattern (corresponding) to a particular roughness of the surface).
 - Flat/smooth surface → sharp RHEED pattern
 - Rough surface → diffuse RHEED pattern
- Monitor the atomic layer-by-atomic layer growth of Xe film— possible due to oscillations in the intensity of the diffracted beam.
- The advantage of setup geometry: good access to the sample

 3ω method: thermal conductivity estimation at cryogenic temperatures Voltage in the sensor depends upon the thermal conductivity of the surrounding fluid—which depends upon the extent of melting

- 2 Pt wires $(15-\mu m \text{ diam}) = a \text{ sensor which}$ detects the fraction of ice/liquid contacting it.
- Heat flux is calculated by measuring the rate the ice melts for a known Xe mass flux to the surface
- An ac current $I_0 \sin \omega t$ applied to the Pt wires \rightarrow 2ω temperature and resistance oscillations \rightarrow **3** ω voltage fluctuation (V_{3 ω})
- $V_{3\omega}$ can be measured $\rightarrow \Delta T = \text{const} (V_{3\omega}/V_{1\omega})$ (phase-sensitive detection)*
- Thermal conductivity estimation by comparing $\Delta T_{measured} = F(frequency)$ with heat transport calculations $\rightarrow k_{eff}$

 $k_{vol} = k_{lig} M_{lig} + k_{ice} M_{ice} \rightarrow ice/liquid fraction$ \rightarrow heat flux

^{*}D.G. Cahill, Rev. Sci. Instrum. 61, 802 (1990).

- Temperature at target: 1000 K
- Temperature before the first radiation shield: 2400 K

Thermal radiation shield design: Monte Carlo calculation **Future experimental directions:** Optimize the temperature and velocity of Xe and optimize the thermal radiation shielding of the target

