The Mercury Laser - Progress Update

Camille Bibeau

National Ignition Facility Directorate Lawrence Livermore National Laboratory Livermore, California 94550

Navel Research Laboratory Washington March 3 & 4 2005

This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

Mercury Laser 55J at 3.3 Hz for >10³ shots

2ω First Light on the Mercury Laser

Outline

- Project Overview
 - Mercury Laser performance goals and status
- Component and system performance
 - Pump diode arrays
 - Crystalline gain media
 - Gas cooled amplifiers
 - 1 µm operation
 - Frequency conversion
- Next Generation Design Considerations
 - Laser architecture building blocks

LLNL has had a long history of building high energy, high peak power laser facilities

The Mercury Laser is the first step toward building a MW class of IFE lasers

The Mercury Laser amplifier technologies

Diode pump arrays

Yb-crystalline amplifiers

Helium gas cooling

These components are being commissioned this year for frequency conversion to 2ω and improved beam quality

Diode tiles and arrays have incurred up to 10⁸ shots with no intrinsic failures

Offline tile tests: 1.5 x 10⁸ shots

Mercury diode arrays: 5 x 10⁶ shots

Diode tile attributes	Goal	Performance	
Power	100 W / bar	120 W / bar	\checkmark
Reliability	2 x 10 ⁸ shots at 100 W / bar	1.4 x 1 0 ⁸ shots at 115 W / bar	v
Power droop over 1 msec	15%	4.3%	v
Linewidth	5 nm	2.3 nm	\checkmark
Integrated linewidth over 1 msec	8.5 nm	4.1 nm	v
Divergence	18 x 180 mrad	15 x 140 mrad	\checkmark
Efficiency	50%	45%	\checkmark

A commercial company, is producing diode tiles based on LLNL technology

Two tiles will be delivered next month for testing

Test Station

Task status:

LLNL technology transfer	100%
Tooling fabrication	100%
Test station and characterization	100%
Vendor for Si submount	100%
Inspection of components	80%

Production of diode tile components has begun

KOH Etching

Metalization

Aluminum Nitride

Molybdenum Heatsinks

Diode bars

Diode tiles are being assembled and tested

Test Fixture

Lens Frames

Lens Assembly

The amplifiers are now populated with 12 of 14 slabs with an additional 14 in the queue

Production improvements and availability of large boules have increased yield allowing full complement of spares

The Magnetorheological Finishing (MRF) machine is being used to improve the wavefront of Yb:S-FAP slabs

Small scale waviness in full size slabs are due to grain boundaries and we are developing methods to eliminate them

Power spectral density (PSD) plots quantify the finishing improvements

We are now concentrating on improving the overall optical quality through simple furnace modifications

CZ Station 3

- Challenge: Grain boundary defects
 - Formed when defect sites migrate together to relieve thermal stresses
- How might we mitigate them?
 - "Pin" defect sites with a larger cation to prevent migration
 - Prevent cool down induced thermal stresses

For an IFE scale laser, we are testing room temperature glue bonding

We plan to "stitch" two (or more) 7x20 cm slabs together to form a multi-kilojoule aperture for an IFE laser

The Mercury Laser

Gas Cooled Amplifier with Crystalline Slabs

80 kW Diode Array

We have deployed a new rep-rated diagnostic to actively record the wavefront of the beam

Mercury was operated for 55 J at 3.3 Hz for > 5.5 hrs with no optical damage with 10 slabs

Mercury was operated for 55J at 5 Hz for > 2.5 hrs with no optical damage with 12 slabs

We have demonstrated 2ω first light on the Mercury Laser

Our baseline material DKDP is comprised of 4-plates and can reach over 80% conversion

Initial experiments are being performed with one out of four plates of DKDP

Hardware

2ω Nearfield

Upcoming experiments will increase the rep-rate and number of crystals to reach higher conversion

Advanced concepts are being pursued with the frequency conversion material YCOB

	Deff (pm/V)	Growth Achieved (dia. cm)	Angular Acceptance (mrad-cm)	Wavelength Acceptance (nm-cm)	Temperature Acceptance (°C-cm)
BBO	2.05	2	0.7	2.15	51
KDP	0.26	50+	1.25	19.7	11.3
DKDP	0.23	50+	1.34	5.2	~11
YCOB	1.1	8.5	1.22	1.15	40

Mercury Team

Kathy Allen Kathy Alviso Paul Armstrong Earl Ault Monique Banuelos Andy Bayramian Ray Beach Rob Campbell Manny Carrillo Chris Ebbers Barry Freitas Keith Kanz John Trenholme Rod Lanning Zhi Liao Joe Menapace Bill Molander Noel Petersen Greg Rogowski Kathleen Schaffers Ralph Speck Chris Stolz Steve Sutton John Tassano Steve Telford

Clay Widmayer Ken Manes Steve Oberhelman Mike Benapfl Kevin Hood Steve Mills Dave Van Lue Bob Kent Tony Ladran Dolores Lambert Peter Thelin Everett Utterback

Collaborators

Laboratory for Laser Energetics Northrop-Grumman Onyx Optics Schott Glass Technologies Quality Thin Films Zygo Photonic Crystals Coherent Directed Energy

- Project Overview
 - Mercury Laser performance goals and status
- Component and system performance
 - Pump diode arrays (Technology transfer to industry)
 - Crystalline gain media (14 spare slabs in queue)
 - Gas cooled amplifiers (Both amplifiers operating)
 - 1 µm operation (55 J at 3.5 Hz for over 5.5 hours)
 - Frequency conversion (First light at 2ω)
- Next Generation Design Considerations
 - Laser architecture building blocks

What are some of the building blocks for considering an architecture suitable for IFE

