Progress in Alternate Chambers Activities

presented by: Jeff Latkowski contributors: Don Blackfield, Maria Jose Caturla, Alison Kubota, Wayne Meier, Ralph Moir, Susana Reyes, and John Perkins

> High Average Power Laser Meeting April 4-5, 2002

Work performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

LLNL's chambers work is divided into four main areas

- □ Magnetic deflection
- _ □ Implementation issues for fast ignition
- _ □ Molecular dynamics simulations for graphite
 - □ Safety & environment

Introduction to magnetic deflection

- □ As discussed Thursday, energetic ions will reach first wall/optics due to need for low gas pressures
- Multiple "radiation damage" issues, but exfoliation is sufficient to cause serious problems; could result in loss of ~2 μm/h

Magnetic deflection progress is picking up

- Original plan was to run ion-only simulations as screening tool:
 - Code assigns e⁻ infinite mass; don't
 "blow a bubble"
 - When e⁻ turned on, time steps and mesh size get prohibitively small
- □ Forced us to reconsider our simplistic plans → consulted with MFE colleagues; following most recommendations:
 - Including much more analytical work
 - Designing set of good 2-D calcs
 - Bringing up MHD code

30 expansion with cusp 8: fest07.lsp - Sat Feb 02 12:38:04 2002

Oldestap?hpmovie1.dot

- □ First, 3-D PIC calcs started with 30-cm-radius plasma at very high (uniform) density → conditions severely stressed the code
- □ Realized that early time history would be ~unaffected by fields due to tremendous plasma pressures → should be able to start problem at later time, after some initial expansion
- Consulted with John Perkins, René Raffray, and Don Haynes to get better understanding of target emissions as f(t)
- Developed "concentric shells" model as tool to understand timeof-flight expansion, which tells us most of what we need to know

The concentric shell model provides us with a visualization of the ion threat

The kinetic B is calculated as a function of radius and type of particle

JFL-4/02 HAPL Mtg.

We plan to use this model to help decide which particles need to be "picked up" when

JFL-4/02 HAPL Mtg.

Other issues have been/are being addressed

- □ Concern about Bremsstrahlung has been addressed:
 - Used Dolan relation for Bremsstrahlung power loss at plasma stagnation: $P_{Brem} = 5 10^{-37} Z_{eff} n_e^2 T_e^{1/2} \sim 7 MW$
 - Assumed full thermalization @ stagnation
 - Suggests this is not an issue for magnetic deflection
 - Conclusion needs to be revisited using concentric shell model

- □ First cut at charge exchange reactions, which could produce neutrals that would defeat our system, has been completed:
 - $n_0 = 3.5 10^{14} \text{ cm}^{-3}$
 - Cross sections:
 - $H^+ + Ar \rightarrow H \approx 1.0 \ 10^{16} \ cm^2$
 - H++Kr \rightarrow H \approx 1.2 _ 10¹⁶ cm²
 - Assume same for $\sigma_{DT+ \rightarrow DT}$
 - $v_{DT+ \rightarrow DT} = n_0 v_i \sigma_{DT+ \rightarrow DT} = 1.9 10^{17} \text{ s}^{-1}$
- Translates into ~24 cm distance between charge exchange reactions \rightarrow needs to be evaluated in more JFL-4/02 HAPEME

Additional calculations are underway and/or planned

- 2-D PIC calculations are also quite slow; Perkins (advanced fuel) calculation will be repeated as performance & timing benchmark for the two codes
- □ 2-D MHD calculations will be performed using TRACK2 (Charlie Hartmann to help on this):
 - Examine bubble size & exit size at appropriate downstream distances
 - Address growth of flutes from initial perturbation
- □ Several magnet layouts analyzed (cusp, mirror, uniform field)
- □ Simple shielding analyses completed:
 - Nuclear heating (recirculating power issue) and radiation damage likely to be doable
 - Activation of NbTi or Nb_3Sn will be issue (fails to meet Class C)
 - Bromberg showed very interesting HTS data at last ARIES meeting; consider these?

We are currently assessing final optics options for FI laser IFE

- Compression beam requirements similar to hot spot ignition (but may not require uniform illumination)
- □ However, petawatt ignitor beams require development of high energy, short-pulse compatible gratings and focusing optics
- □ Need to develop an appropriate solution for FI final optics layout
 - optimum stand off-distance compatible with spot size requirement (~ $30 \,\mu m$)
 - optics damage threshold for high intensity laser
 - potential target directional output (case of cone-focused design)
- □ Need to understand the various final optics options
 - Parabolic mirrors: conventional option, metal or dielectric coated gratings
 - Fresnel lenses: still have some development issues
 - Plasma mirrors: target using built-in mirror combined with permanent thin fused silica gratings may be the most adequate
 - GIMMs, GILMMs

Conventional option would use large scale metal or dielectric coated gratings

- Petawatt laser in LLNL used large scale metallic gratings
- □ However, available metallic gratings do not have sufficient laser damage threshold for use in FI
- Multi-layer dielectric and SiO₂ transmission gratings are currently being designed and tested

Petawatt-scale gold-coated grating

Multilayer Grating Structure

Optics protection from target emissions should consider plasma mirrors or GILMMs

□ Large diameter gratings with long stand-off distance could be combined with parabolic plasma mirrors to focus the beams

- Also, a GILMM has been suggested for robust final optics of a laser IFE power plant
- Grazing incidence angle will enlarge the size of optics, layout for FI needs to be addressed
- More analyses are needed to address acoustic vibrations and film smoothness

Summary and directions for fast ignition work

□ Fast ignition offers many potential advantages for IFE:

- High gain at low driver energy
- Lower COE and/or small size plants
- Reduced constraints on target fab and injection
- Possibility of using advanced fuels
- Significant work is needed to address numerous issues related to implementation (target design, fabrication, injection, beam focusing and timing, final optics)
- □ Important R&D effort is required in the final optics development for ignitor beams:
 - Numerical modeling
 - Sub-scale fabrication
 - Damage testing
 - Optical characterization

Started to quantify number and type of defects produced during irradiation: 1keV recoil results in 24 vacancies, 2keV recoil 55 vacancies Molecular dynamics simulation of 1 keV PKA in graphite

Molecular dynamics simulation of 2 keV PKA in graphite

Defect Energetics provide information about trapping sites for H, T and D

Single Vacancy in Graphite

H on a Vacant site in Graphite

De-trapping energy of a H from a Vacant site = 3.8 eV

Di-vacancy Structure in Graphite

H on a Di-Vacancy

Binding Energy = 3.2 eV

We are quantifying the number of H atoms that can be accommodated per vacancy cluster as a function of cluster size to account for the total retention

Summary

- □ Magnetic deflection design effort is currently focused on attempting to make problem tractable:
 - Concentric shell model to be used to initialize problem
 - Charge exchange needs t be addressed in detail
- Fast ignition has multiple options for the final optic, but issues such as directional output, stand-off distance vs. spot size, and optics damage at high intensities need to be better understood
- MDS work is making nice progress; Zeroing in on number of stables defects and number of tritium atoms that can be accommodated (trapped) vs. cluster size