Development of Comprehensive Integrated Model for IFE Chamber Wall Interaction

Ahmed Hassanein Vitali Morozov Isak Konkashbaev

Argonne National Laboratory

Presented at the High Average Power Laser Meeting Pleasanton, Ca, Nov. 13-14, 2001

OUTLINE

• Identify all processes for wall response/erosion:

- Energy deposition from laser, photons, and ions
- Spatial heat generation in wall
- Phase change: melting, evaporation/sublimation
- Physical sputtering by various target debris
- Chemical sputtering and RES
- Macroscopic erosion
- Assess relative importance of these processes for IFE chamber wall conditions
- Identify key processes for inclusion in the computer module during first year effort.
- Develop mathematical models and independent computer module based on these models
- Plans for future upgrade to add more detailed models and cover a wider range of chamber conditions

Physical Sputtering Model

Physics	Physical model depends on wall material, energy of ion debris incident particle		
	angles (normal in this case).		
Model	Developed model is based on semi empirical formula and on 3-D Monte Carlo models that depends on energy of ion debris and burn products and their spectra		
	• The sputtering yield Y is calculated from the semi empirical formula:		
	$Y = \frac{C_Y}{u_0} Z_1^{0.75} (Z - 1.8)^2 \left(\frac{M_1 - 0.8}{M_2}\right)^{1.5} \frac{(E_0 - E_{th})}{(E_0 - E_{th} + 50Z_1^{0.75}Z_2)^2}$		
	where		
	C_Y is a constant, u_o is surface binding energy, and E_{th} is threshold energy for		
	sputtering.		
Key Parameters	Energy of incident ion debris, wall material, long term radiation effects.		
Key Uncertainties	Energy of ion debris spectra reaching the wall, characteristics of surface modified layer during operation.		
Relative Importance	Tends to be a threshold mechanism and to peak at a certain ion energy; e.g. for C.		
Relative Importance	it peaks at ion energy of ~ 1 keV. Possibly not a major mechanism for chamber		
	wall erosion and mass evolution, in particular for cases with no or very low		
	protective gas pressure and high energy incident ions (~1 MeV)		

Physical Sputtering Model (cont)

Time-Scale	Comparable to energy-deposition time-scale.	
Spatial Location	Wall surface and in particular near surface modified layer.	
Inter-relation with	All processes affecting particle transport and energy deposition with or without	
Other Processes	gas.	
Inclusion in Model	Could be included from the start particularly for cases with gas protection and low evaporation and low macroscopic erosion regime, but with lower priority	

Chemical Sputtering and Radiation Enhanced Sublimation of Graphite

Surface Temperature, K

HEIGHTS CALCULATION of DEBRIS ION RANGES

Debris Ions - NRL Direct Drive Target

CFC cx-2002u Wall

HEIGHTS CALCULATION of FAST ION RANGES Fast lons - NRL Direct Drive Target

CFC cx-2002u Wall

HEIGHTS CALCULATION of SURFACE TEMPERATURE NRL Direct Drive Target

HEIGHTS SIMULATION of NRL DIRECT TARGET

Temperature rise due to laser, X-ray, and ion depositions

HEIGHTS CALCULATION of SPUTTERING-VAPORIZATION NRL Direct Drive Target

CFC cx-2002u Wall

Flux, $\#/cm^2/s$

Tungsten Wall

Flux, $\#/cm^2/s$

CFC cx-2002u Wall

Flux, $\#/cm^2/s$

6 Hz @ 85% availability

	GRAPHITE	TUNGSTEN
Vaporization	30 μm	15 μm
Chemical	20 μm	
RES	600 μm	
Physical	2 μm	6 μm

6 Hz @ 85% availability

	CFC cx-2002u	CFC MKC-1PH
Vaporization	30 μm	< 1 µm
Chemical	20 μm	130 μm
RES	600 μm	15 μm
Physical	2 μm	2 μm

The proposed tasks and deliverables are summarized below:

• Identify all <u>potentially important processes</u> for IFE chamber wall interaction.

These processes include:

INCLUDED
INCLUDED
INCLUDED
INCLUDED
BEING DEVELOPED

Assess the importance of these processes for IFE chamber wall interaction by performing preliminary parametric estimates. Identify key processes for inclusion during the first year. Evolve mathematical models and equations of these key processes. Evolve mathematical models and equations of these key processes. Write an independent computer module based on above models.

• Perform <u>preliminary comparison</u> of module results with existing codes for selected cases.